Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 9(18): 3900-3911, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33928965

RESUMO

In this study, we report the synthesis of self-assembled dityrosine nanotubes as a biologically functional scaffold and their interactions with neural cells. Quantum chemical methods were used to determine the forces involved in the self-assembly process. The physicochemical properties of the nanostructures relevant to their potential as bioactive scaffolds were characterized. The morphology, secondary structure, crystallinity, mechanical properties, and thermal characteristics of YY nanotubes were analyzed. The influence of these nanotubes as scaffolds for neural cells was studied in vitro to understand their effects on cell proliferation, morphology, and gene expression. The scanning electron microscopy and fluorescence confocal microscopy demonstrated the feasibility of nanotube scaffolds for enhanced adhesion to rat and human neural cells (PC12 and SH-SY5Y). Preliminary ELISA and qPCR analyses demonstrate the upregulation of dopamine synthesis and genes involved in dopamine expression and differentiation. The expression levels of DßH, AADC, VMAT2 and MAOA in SH-SY5Y cells cultured on the nanotube scaffolds for 7 days were elevated in comparison to the control cells.


Assuntos
Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Dopamina/metabolismo , Nanotubos/química , Tirosina/análogos & derivados , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Teoria da Densidade Funcional , Humanos , Nanotubos/toxicidade , Neurônios/citologia , Neurônios/metabolismo , Ratos , Tirosina/química , Regulação para Cima/efeitos dos fármacos
2.
Bioorg Med Chem Lett ; 30(23): 127550, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32927027

RESUMO

Synthesis of novel 4(3H)-quinazolinonyl aminopyrimidine derivatives has been achieved via quinazolinonyl enones which in turn were obtained from 2-acyl-4(3H)-quinazolinone. They have been assayed for biofilm inhibition against Gram-positive (methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative bacteria (Acinetobacter baumannii). The analogues with 2,4,6-trimethoxy phenyl, 4-methylthio phenyl, and 3-bromo phenyl substituents (5h, 5j & 5k) have been shown to inhibit biofilm formation efficiently in MRSA with IC50 values of 20.7-22.4 µM). The analogues 5h and 5j have demonstrated low toxicity in human cells in vitro and can be investigated further as leads.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Pirimidinas/farmacologia , Quinazolinonas/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/fisiologia , Antibacterianos/síntese química , Antibacterianos/toxicidade , Linhagem Celular , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/toxicidade , Quinazolinonas/síntese química , Quinazolinonas/toxicidade , Relação Estrutura-Atividade
3.
J Biomed Mater Res A ; 108(4): 829-838, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31808978

RESUMO

Short oligomeric peptides typically do not exhibit the entanglements required for the formation of nanofibers via electrospinning. In this study, the synthesis of nanofibers composed of tyrosine-based dipeptides via electrospinning, has been demonstrated. The morphology, mechanical stiffness, biocompatibility, and stability under physiological conditions of such biodegradable nanofibers were characterized. The electrospun peptide nanofibers have diameters less than 100 nm and high mechanical stiffness. Raman and infrared signatures of the peptide nanofibers indicate that the electrostatic forces and solvents used in the electrospinning process lead to secondary structures different from self-assembled nanostructures composed of similar peptides. Crosslinking of the dipeptide nanofibers using 1,6-diisohexanecyanate (HMDI) improved the physiological stability, and initial biocompatibility testing with human and rat neural cell lines indicate no cytotoxicity. Such electrospun peptides open up a realm of biomaterials design with specific biochemical compositions for potential biomedical applications such as tissue repair, drug delivery, and coatings for implants.


Assuntos
Oligopeptídeos/química , Engenharia Tecidual/métodos , Tirosina/química , Animais , Humanos , Microscopia de Força Atômica , Nanofibras/química , Nanofibras/ultraestrutura , Células PC12 , Estrutura Secundária de Proteína , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
4.
ACS Appl Bio Mater ; 1(5): 1266-1275, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34996230

RESUMO

The discovery of self-assembling peptides, which can form well-ordered structures, has opened a realm of opportunity for the design of tailored short peptide-based nanostructures. In this study, a combined experimental and computational approach was utilized to understand the intramolecular and intermolecular interactions contributing to the self-assembly of linear and cyclic tryptophan-tyrosine (WY) dipeptides. The density functional tight binding (DFTB) calculations with empirical dispersive corrections assisted the identification of the lowest energy conformers. Conformer analysis and the prediction of the electronic structure for the monomeric, dimeric, and hexameric forms of the cyclic and linear WY confirmed the contributions of hydrogen bonding, π-π stacking, and CH-π interactions in the stability of the self-assembled nanotubes. The influence of the processing conditions on the morphological and thermal characteristics, as well as the secondary structures of the synthesized nanostructures, were analyzed. Preliminary studies of the influence of the nanotubes on the fate of neuronal cell lines such as, PC-12 cells indicate that the nanotubes promote cellular proliferation, and differentiation in the absence of growth factors. The aspect ratio of the nanotubes played an essential role in cellular interactions where a higher cellular uptake was observed in nanotubes of lower aspect ratios. These results provide insight for future applications of such nanotubes as scaffolds for tissue engineering and nerve regeneration and in drug delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...