Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Respir Physiol Neurobiol ; 246: 59-66, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28778649

RESUMO

The modulation of cough by microinjections of codeine in 3 medullary regions, the solitary tract nucleus rostral to the obex (rNTS), caudal to the obex (cNTS) and the lateral tegmental field (FTL) was studied. Experiments were performed on 27 anesthetized spontaneously breathing cats. Electromyograms (EMG) were recorded from the sternal diaphragm and expiratory muscles (transversus abdominis and/or obliquus externus; ABD). Repetitive coughing was elicited by mechanical stimulation of the intrathoracic airways. Bilateral microinjections of codeine (3.3 or 33mM, 54±16nl per injection) in the cNTS had no effect on cough, while those in the rNTS and in the FTL reduced coughing. Bilateral microinjections into the rNTS (3.3mM codeine, 34±1 nl per injection) reduced the number of cough responses by 24% (P<0.05), amplitudes of diaphragm EMG by 19% (P<0.01), of ABD EMG by 49% (P<0.001) and of expiratory esophageal pressure by 56% (P<0.001). Bilateral microinjections into the FTL (33mM codeine, 33±3 nl per injection) induced reductions in cough expiratory as well as inspiratory EMG amplitudes (ABD by 60% and diaphragm by 34%; P<0.01) and esophageal pressure amplitudes (expiratory by 55% and inspiratory by 26%; P<0.001 and 0.01, respectively). Microinjections of vehicle did not significantly alter coughing. Breathing was not affected by microinjections of codeine. These results suggest that: 1) codeine acts within the rNTS and the FTL to reduce cough in the cat, 2) the neuronal circuits in these target areas have unequal sensitivity to codeine and/or they have differential effects on spatiotemporal control of cough, 3) the cNTS has a limited role in the cough suppression induced by codeine in cats.


Assuntos
Antitussígenos/uso terapêutico , Codeína/uso terapêutico , Tosse/tratamento farmacológico , Bulbo/fisiologia , Músculos Abdominais/efeitos dos fármacos , Músculos Abdominais/fisiopatologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Gatos , Diafragma/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletromiografia , Feminino , Masculino , Bulbo/efeitos dos fármacos , Microinjeções , Músculos Respiratórios/efeitos dos fármacos , Músculos Respiratórios/fisiopatologia
2.
Respir Physiol Neurobiol ; 229: 43-50, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27125979

RESUMO

The effect of volume-related feedback and output airflow resistance on the cough motor pattern was studied in 17 pentobarbital anesthetized spontaneously-breathing cats. Lung inflation during tracheobronchial cough was ventilator controlled and triggered by the diaphragm electromyographic (EMG) signal. Altered lung inflations during cough resulted in modified cough motor drive and temporal features of coughing. When tidal volume was delivered (via the ventilator) there was a significant increase in the inspiratory and expiratory cough drive (esophageal pressures and EMG amplitudes), inspiratory phase duration (CTI), total cough cycle duration, and the duration of all cough related EMGs (Tactive). When the cough volume was delivered (via the ventilator) during the first half of inspiratory period (at CTI/2-early over inflation), there was a significant reduction in the inspiratory and expiratory EMG amplitude, peak inspiratory esophageal pressure, CTI, and the overlap between inspiratory and expiratory EMG activity. Additionally, there was significant increase in the interval between the maximum inspiratory and expiratory EMG activity and the active portion of the expiratory phase (CTE1). Control inflations coughs and control coughs with additional expiratory resistance had increased maximum expiratory esophageal pressure and prolonged CTE1, the duration of cough abdominal activity, and Tactive. There was no significant difference in control coughing and/or control coughing when sham ventilation was employed. In conclusion, modified lung inflations during coughing and/or additional expiratory airflow resistance altered the spatio-temporal features of cough motor pattern via the volume related feedback mechanism similar to that in breathing.


Assuntos
Tosse/fisiopatologia , Pulmão/fisiopatologia , Respiração , Anestesia , Animais , Gatos , Eletromiografia , Esôfago/fisiopatologia , Feminino , Masculino , Modelos Animais , Movimento/fisiologia , Pressão , Respiração Artificial , Volume de Ventilação Pulmonar , Fatores de Tempo
3.
Respir Physiol Neurobiol ; 184(1): 106-12, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22929585

RESUMO

In order to determine if a codeine-sensitive control system for cough exists in the medullary raphé four microinjections of codeine (3.3 and 16.5 mM; 36.6±0.7 nl 1.5 and 3 mm rostral to the obex at the depths 1.5 and 3 mm; the total dose 1.12±0.3 nmol, 9 animals) were performed on pentobarbitone anesthetized spontaneously breathing cats. Amplitudes of abdominal muscle EMG moving averages during mechanically induced tracheobronchial cough decreased by 18% compared to control coughs (p<0.05). The duration between maxima of cough diaphragm and abdominal muscle EMG discharge, cough expiratory phase duration and period of relative motor quiescence between coughs were increased (all p<0.05). Cough number, other cough parameters, and cardiorespiratory characteristics were not altered significantly. Control microinjections of artificial cerebro-spinal fluid had no effect on coughing. Codeine sensitive neurons involved in the generation or modulation of motor pattern of tracheobronchial cough are located in the medullary midline raphé nuclei; however, their contribution to codeine induced cough suppression is limited.


Assuntos
Antitussígenos/administração & dosagem , Codeína/administração & dosagem , Tosse/fisiopatologia , Núcleos da Rafe/efeitos dos fármacos , Núcleos da Rafe/fisiologia , Animais , Gatos , Eletromiografia , Feminino , Masculino , Microinjeções , Músculos Respiratórios/efeitos dos fármacos , Músculos Respiratórios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...