Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 132(2): 183-8, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15312933

RESUMO

High pesticide concentrations in soil from spills or discharges can result in point-source contamination of ground and surface waters. Cost-effective technologies are needed for on-site treatment that meet clean-up goals and restore soil function. Remediation is particularly challenging when a mixture of pesticides is present. Zerovalent iron (Fe0) has been shown to promote reductive dechlorination and nitro group reduction of a wide range of contaminants in soil and water. We employed Fe0 for on-site treatment of soil containing > 1000 mg metolachlor, > 55 mg alachlor, > 64 mg atrazine, > 35 mg pendimethalin, and > 10 mg chlorpyrifos kg(-1). While concentrations were highly variable within the windrowed soil, treatment with 5% (w/w) Fe0 resulted in > 60% destruction of the five pesticides within 90 d and increased to > 90% when 2% (w/w) Al2(SO4)3 was added to the Fe0. GC/MS analysis confirmed dechlorination of metolachlor and alachlor during treatment. Our observations support the use of Fe0 for ex situ treatment of pesticide-contaminated soil.


Assuntos
Resíduos Industriais , Ferro , Resíduos de Praguicidas , Poluentes do Solo
2.
J Environ Qual ; 33(4): 1305-13, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15254112

RESUMO

Soils contaminated from military operations often contain mixtures of HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), and TNT (2,4,6-trinitrotoluene) rather than a single explosive. Differences among explosives in solubility and reactivity make developing a single remediation treatment difficult. When Fe(0) was used to treat a munitions-contaminated soil, we observed high rates of destruction for RDX and TNT (98%) but not HMX. Our objective was to determine if HMX destruction by Fe(0) could be enhanced by increasing HMX solubility by physical (temperature) or chemical (surfactants) means. To determine electron acceptor preference, we treated RDX and HMX with Fe(0) in homogeneous solutions and binary mixtures. Increasing aqueous temperature (20 to 55 degrees C) increased HMX solubility (2 to 22 mg L(-1)) but did not increase destruction by Fe(0) in a contaminated soil slurry that also contained RDX and TNT. Batch experiments using equal molar concentrations of RDX and HMX demonstrated that RDX was preferentially reduced over HMX by Fe(0). By testing various surfactants, we found that the cationic surfactants (HDTMA [hexadecyltrimethylammonium bromide], didecyl, and didodecyl) were most effective in increasing HMX concentration in solution. Didecyl and HDTMA were also found to be highly effective in facilitating the transformation of HMX by Fe(0). Using HDTMA or didecyl solutions (3%, w/v) containing solid-phase HMX, we observed that 100% of the added HMX was transformed by Fe(0) in the didecyl matrix and 60% in the HDTMA matrix. These results indicate that cationic surfactants can increase HMX solubility and facilitate Fe(0)-mediated transformation kinetics but HMX destruction rates will be slowed when RDX is present.


Assuntos
Azocinas/isolamento & purificação , Compostos Heterocíclicos com 1 Anel/isolamento & purificação , Rodenticidas/isolamento & purificação , Poluentes do Solo/isolamento & purificação , Tensoativos , Triazinas/isolamento & purificação , Trinitrotolueno/isolamento & purificação , Azocinas/química , Resíduos Perigosos , Compostos Heterocíclicos com 1 Anel/química , Ferro/química , Oxirredução , Eliminação de Resíduos , Rodenticidas/química , Solubilidade , Temperatura , Triazinas/química , Trinitrotolueno/química
3.
J Environ Qual ; 32(5): 1717-25, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14535313

RESUMO

Soils in Technical Area 16 at Los Alamos National Laboratory (LANL) are severely contaminated from past explosives testing and research. Our objective was to conduct laboratory and pilot-scale experiments to determine if zerovalent iron (Fe(0)) could effectively transform RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) in two LANL soils that differed in physicochemical properties (Soils A and B). Laboratory tests indicated that Soil A was highly alkaline and needed to be acidified [with H2SO4, Al2(SO4)3, or CH3COOH] before Fe(0) could transform RDX. Pilot-scale experiments were performed by mixing Fe(0) and contaminated soil (70 kg), and acidifying amendments with a high-speed mixer that was a one-sixth replica of a field-scale unit. Soils were kept unsaturated (soil water content = 0.30-0.34 kg kg(-1)) and sampled with time (0-120 d). While adding CH3COOH improved the effectiveness of Fe(0) to remove RDX in Soil A (98% destruction), CH3COOH had a negative effect in Soil B. We believe that this difference is a result of high concentrations of organic matter and Ba. Adding CH3COOH to Soil B lowered pH and facilitated Ba release from BaSO4 or BaCO3, which decreased Fe(0) performance by promoting flocculation of humic material on the iron. Despite problems encountered with CH3COOH, pilot-scale treatment of Soil B (12 100 mg RDX kg(-1)) with Fe(0) or Fe(0) + Al2(SO4)3 showed high RDX destruction (96-98%). This indicates that RDX-contaminated soil can be remediated at the field scale with Fe(0) and soil-specific problems (i.e., alkalinity, high organic matter or Ba) can be overcome by adjustments to the Fe(0) treatment.


Assuntos
Poluição Ambiental/prevenção & controle , Ferro/química , Rodenticidas/química , Poluentes do Solo/isolamento & purificação , Triazinas/química , Concentração de Íons de Hidrogênio , Solo
4.
J Environ Qual ; 31(3): 962-9, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12026101

RESUMO

Permeable zerovalent iron (Fe0) barriers have become an established technology for remediating contaminated ground water. This same technology may be applicable for treating pesticides amenable to dehalogenation as they move downward in the vadose zone. By conducting miscible displacement experiments in the laboratory with metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide; a chloroacetanilide herbicide] under unsaturated flow, we provide proof-of-concept for such an approach. Transport experiments were conducted in repacked, unsaturated soil columns attached to vacuum chambers and run under constant matrix potential (-30 kPa) and Darcy flux (approximately 2 cm d(-1)). Treatments included soil columns equipped with and without a permeable reactive barrier (PRB) consisting of a Fe0-sand (50:50) mixture supplemented with Al2(SO4)3. A continuous pulse of 14C-labeled metolachlor (1.45 mM) and tritiated water (3H2O) was applied to top of the columns for 10 d. Results indicated complete (100%) metolachlor destruction, with the dehalogenated product observed as the primary degradate in the leachate. Similar results were obtained with a 25:75 Fe0-sand barrier but metolachlor destruction was not as efficient when unannealed iron was used or Al2(SO4)3 was omitted from the barrier. A second set of transport experiments used metolachlor-contaminated soil in lieu of a 14C-metolachlor pulse. Under these conditions, the iron barrier decreased metolachlor concentration in the leachate by approximately 50%. These results provide initial evidence that permeable iron barriers can effectively reduce metolachlor leaching under unsaturated flow.


Assuntos
Acetamidas/química , Cloretos/química , Herbicidas/química , Ferro/química , Poluentes do Solo/análise , Solo/análise , Poluentes Químicos da Água/análise , Poluição da Água/prevenção & controle , Purificação da Água/métodos , Humanos , Troca Iônica
5.
J Environ Qual ; 30(5): 1636-43, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11577871

RESUMO

Pesticide spills are common occurrences at agricultural cooperatives and farmsteads. When inadvertent spills occur, chemicals normally beneficial can become point sources of ground and surface water contamination. We report results from a field trial where approximately 765 m3 of soil from a metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] spill site was treated with zerovalent iron (Fe0). Preliminary laboratory experiments confirmed metolachlor dechlorination by Fe0 in aqueous solution and that this process could be accelerated by adding appropriate proportions of Al2(SO4)3 or acetic acid (CH3COOH). The field project was initiated by moving the stockpiled, contaminated soil into windrows using common earth-moving equipment. The soil was then mixed with water (0.35-0.40 kg H2O kg(-1)) and various combinations of 5% Fe0 (w/w),2% Al2(SO4)3 (w/w), and 0.5% acetic acid (v/w). Windrows were covered with clear plastic and incubated without additional mixing for 90 d. Approximately every 14 d, the plastic sheeting was removed for soil sampling and the surface of the windrows rewetted. Metolachlor concentrations were significantly reduced and varied among treatments. The addition of Fe0 alone decreased metolachlor concentration from 1789 to 504 mg kg(-1) within 90 d, whereas adding Fe0 with Al2(SO4)3 and CH3COOH decreased the concentration from 1402 to 13 mg kg(-1). These results provide evidence that zerovalent iron can be used for on-site, field-scale treatment of pesticide-contaminated soil.


Assuntos
Acetamidas/química , Herbicidas/química , Ferro/química , Poluentes do Solo/análise , Poluição Ambiental/prevenção & controle , Poluentes da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...