Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci Methods ; 307: 203-209, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29859877

RESUMO

BACKGROUND: Slice cultures have been prepared from several organs. With respect to the brain, advantages of slice cultures over dissociated cell cultures include maintenance of the cytoarchitecture and neuronal connectivity. Slice cultures from adult human brain have been reported and constitute a promising method to study neurological diseases. Despite this potential, few studies have characterized in detail cell survival and function along time in short-term, free-floating cultures. NEW METHOD: We used tissue from adult human brain cortex from patients undergoing temporal lobectomy to prepare 200 µm-thick slices. Along the period in culture, we evaluated neuronal survival, histological modifications, and neurotransmitter release. The toxicity of Alzheimer's-associated Aß oligomers (AßOs) to cultured slices was also analyzed. RESULTS: Neurons in human brain slices remain viable and neurochemically active for at least four days in vitro, which allowed detection of binding of AßOs. We further found that slices exposed to AßOs presented elevated levels of hyperphosphorylated Tau, a hallmark of Alzheimer's disease. COMPARISON WITH EXISTING METHOD(S): Although slice cultures from adult human brain have been previously prepared, this is the first report to analyze cell viability and neuronal activity in short-term free-floating cultures as a function of days in vitro. CONCLUSIONS: Once surgical tissue is available, the current protocol is easy to perform and produces functional slices from adult human brain. These slice cultures may represent a preferred model for translational studies of neurodegenerative disorders when long term culturing in not required, as in investigations on AßO neurotoxicity.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Neurotransmissores/metabolismo , Adulto , Análise de Variância , Epilepsia do Lobo Temporal/patologia , Feminino , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Fosfopiruvato Hidratase/metabolismo , Cloreto de Potássio/farmacologia , Proteínas tau/metabolismo
2.
Behav Brain Res ; 297: 180-6, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26462572

RESUMO

In previous studies, we verified that exposure to unpredictable chronic mild stress (UCMS) facilitates avoidance responses in the elevated T-maze (ETM) and increased Fos-immunoreactivity in different brain structures involved in the regulation of anxiety, including the dorsal raphe (DR). Since, it has been shown that the DR is composed of distinct subpopulations of serotonergic and non-serotonergic neurons, the present study investigated the pattern of activation of these different subnuclei of the region in response to this stress protocol. Male Wistar rats were either unstressed or exposed to the UCMS procedure for two weeks and, subsequently, analyzed for Fos-immunoreactivity (Fos-ir) in serotonergic cells of the DR. To verify if the anxiogenic effects observed in the ETM could be generalized to other anxiety models, a group of animals was also tested in the light/dark transition test after UCMS exposure. Results showed that the UCMS procedure decreased the number of transitions and increased the number of stretched attend postures in the model, an anxiogenic effect. UCMS exposure also increased Fos-ir and the number of double-labeled neurons in the mid-rostral subdivision of the dorsal part of the DR and in the mid-caudal region of the lateral wings. In the caudal region of the DR there was a significant increase in the number of Fos-ir. No significant effects were found in the other DR subnuclei. These results corroborate the idea that neurons of specific subnuclei of the DR regulate anxiety responses and are differently activated by chronic stress exposure.


Assuntos
Transtornos de Ansiedade/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Neurônios/metabolismo , Estresse Psicológico/metabolismo , Animais , Transtornos de Ansiedade/patologia , Doença Crônica , Modelos Animais de Doenças , Núcleo Dorsal da Rafe/patologia , Imuno-Histoquímica , Masculino , Neurônios/patologia , Fotomicrografia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Wistar , Serotonina/metabolismo , Estresse Psicológico/patologia , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...