Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 252(6): 104, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33196909

RESUMO

MAIN CONCLUSION: We report a soybean gene co-expression network built with data from 1284 RNA-Seq experiments, which was used to identify important regulators, modules and to elucidate the fates of gene duplicates. Soybean (Glycine max (L.) Merr.) is one of the most important crops worldwide, constituting a major source of protein and edible oil. Gene co-expression networks (GCN) have been extensively used to study transcriptional regulation and evolution of genes and genomes. Here, we report a soybean GCN using 1284 publicly available RNA-Seq samples from 15 distinct tissues. We found modules that are differentially regulated in specific tissues, comprising processes such as photosynthesis, gluconeogenesis, lignin metabolism, and response to biotic stress. We identified transcription factors among intramodular hubs, which probably integrate different pathways and shape the transcriptional landscape in different conditions. The top hubs for each module tend to encode proteins with critical roles, such as succinate dehydrogenase and RNA polymerase subunits. Importantly, gene essentiality was strongly correlated with degree centrality and essential hubs were enriched in genes involved in nucleic acids metabolism and regulation of cell replication. Using a guilt-by-association approach, we predicted functions for 93 of 106 hubs without functional description in soybean. Most of the duplicated genes had different transcriptional profiles, supporting their functional divergence, although paralogs originating from whole-genome duplications (WGD) are more often preserved in the same module than those from other mechanisms. Together, our results highlight the importance of GCN analysis in unraveling key functional aspects of the soybean genome, in particular those associated with hub genes and WGD events.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Glycine max , Perfilação da Expressão Gênica , Glycine max/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Plant J ; 103(5): 1894-1909, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32445587

RESUMO

Soybean (Glycine max [L.] Merr.) is a major crop in animal feed and human nutrition, mainly for its rich protein and oil contents. The remarkable rise in soybean transcriptome studies over the past 5 years generated an enormous amount of RNA-seq data, encompassing various tissues, developmental conditions and genotypes. In this study, we have collected data from 1298 publicly available soybean transcriptome samples, processed the raw sequencing reads and mapped them to the soybean reference genome in a systematic fashion. We found that 94% of the annotated genes (52 737/56 044) had detectable expression in at least one sample. Unsupervised clustering revealed three major groups, comprising samples from aerial, underground and seed/seed-related parts. We found 452 genes with uniform and constant expression levels, supporting their roles as housekeeping genes. On the other hand, 1349 genes showed heavily biased expression patterns towards particular tissues. A transcript-level analysis revealed that 95% (70 963 of 74 490) of the assembled transcripts have intron chains exactly matching those from known transcripts, whereas 3256 assembled transcripts represent potentially novel splicing isoforms. The dataset compiled here constitute a new resource for the community, which can be downloaded or accessed through a user-friendly web interface at http://venanciogroup.uenf.br/resources/. This comprehensive transcriptome atlas will likely accelerate research on soybean genetics and genomics.


Assuntos
Atlas como Assunto , Glycine max/genética , RNA de Plantas/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Biblioteca Gênica , Genes Essenciais/genética , Genes de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...