Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 11(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34944271

RESUMO

Current livestock practices do not meet current real-world social and environmental requirements, pushing farmers away from rural areas and only sustaining high productivity through the overuse of fossil fuels, causing numerous environmental side effects. In this narrative review, we explore how the Voisin Rational Grazing (VRG) system responds to this problem. VRG is an agroecological system based on four principles that maximise pasture growth and ruminant intake, while, at the same time, maintaining system sustainability. It applies a wide range of regenerative agricultural practices, such as the use of multispecies swards combined with agroforestry. Planning allows grazing to take place when pastures reach their optimal resting period, thus promoting vigorous pasture regrowth. Moreover, paddocks are designed in a way that allow animals to have free access to water and shade, improving overall animal welfare. In combination, these practices result in increased soil C uptake and soil health, boost water retention, and protect water quality. VRG may be used to provide ecosystem services that mitigate some of the current global challenges and create opportunities for farmers to apply greener practices and become more resilient. It can be said that VRG practitioners are part of the initiatives that are rethinking modern livestock agriculture. Its main challenges, however, arise from social constraints. More specifically, local incentives and initiatives that encourage farmers to take an interest in the ecological processes involved in livestock farming are still lacking. Little research has been conducted to validate the empirical evidence of VRG benefits on animal performance or to overcome VRG limitations.

2.
Opt Express ; 25(24): 30051-30060, 2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-29221040

RESUMO

This paper proposes the recycling of poly (methyl methacrylate) plates, formerly used in LCD monitors to produce polymer optical fibers without cladding for sensor systems and a discussion about the fabrication process of the fiber cladding is briefly presented. After disassembling LCD monitors the acrylic plate is cleaned and submitted to an extrusion process. Extrusion temperatures of 220°C, 230°C and 240°C were applied, and the produced polymer fibers were characterized by infrared and visible spectrometry, as well as evaluated for thermal analysis through differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Furthermore, a refractive index sensor was developed with the recycled fibers. Results show that the recycled fiber refractive index sensor is linear (R2 = 0.99) and presents a sensitivity of more than 4 times higher when compared to a sensor using a commercial POF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...