Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35890529

RESUMO

The use of municipal solid waste compost (MSW) and biochar, two renewable resources with a low carbon footprint as components of substrates, may be an alternative to reducing peat and coir usage. The aim of this study was to assess the suitability of selectively collected MSW and biochar as components of the coir-based substrate to spinach grown. An experiment was carried out to evaluate five substrates, coir and four coir-based blends (coir + biochar + perlite, coir + municipal waste compost + perlite, coir + biochar + pine bark, and coir + biochar + pine bark) with 12% (v/v) MSW or biochar and 10% (v/v) perlite or pine bark. Spinach seedlings were transplanted into Styrofoam planting boxes filled with the substrate. Each planting box was irrigated daily by drip with a complete nutrient solution. Plants grown with MSW had a higher content of calcium. Shoot Mn increased in the biochar-containing mixes. The shoot dry weight of the plants grown in the different blends was higher than those grown in coir. Fresh yield was higher in mixes with MSW and perlite (3 kg/m2) or pine bark (2.87 kg/m2). Total phenols and DPPH antioxidant activity were not affected by the substrates. However, shoot ascorbate (AsA) content was higher or equal to those plants grown in coir. MSW and biochar are alternatives to reduce the use of coir and peat.

2.
Plants (Basel) ; 11(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35009025

RESUMO

The aim of the present study was to evaluate the effects of nitrogen source applied by fertigation to an enriched soil with organic compost on plant growth, mineral nutrition, and phytochemical contents in two successive harvests in coriander. The treatments were as follows: unfertilized soil, soil enriched with organic compost, and soil enriched with organic compost to which 60 kg N ha-1 as ammonium nitrate and as ammonium sulfate applied by fertigation were added. Ammonium nitrate addition allowed to obtain a high total fresh yield (3.6 kg m-2) with a low inorganic nitrogen input. Ammonium nitrate increased plant shoot dry weight; fresh yield; and shoot N, K, and Ca uptake in the first harvest. Ammonium nitrate relative to organic compost and to ammonium sulfate increased fresh yield by approximately 57 and 25%, respectively. However, ammonium sulfate in the first harvest greatly increased shoot total phenols, from 137 mgGAE/100 g FW in ammonium nitrate to 280.4 mgGAE/100 g FW. Coriander's fresh yield, in the second harvest, was unaffected by nitrogen addition. However, ammonium nitrate increased shoot total phenols and FRAP activity. Overall, the shoot phytochemical accumulation in the second harvest was lower than in the first. The combined application of ammonium nitrate and organic compost is a strategy to reduce inorganic nitrogen application.

3.
Front Plant Sci ; 2: 46, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22639596

RESUMO

A 2-year study was done to compare the effects of nitrogen (N) fertigation and granular fertilizer application on growth and availability of soil N during establishment of highbush blueberry (Vaccinium corymbosum L. "Bluecrop"). Treatments included four methods of N application (weekly fertigation, split fertigation, and two non-fertigated controls) and four levels of N fertilizer (0, 50, 100, and 150 kg·ha(-1) N). Fertigation treatments were irrigated by drip and injected with a liquid urea solution; weekly fertigation was applied once a week from leaf emergence to 60 d prior to the end of the season while split fertigation was applied as a triple-split from April to June. Non-fertigated controls were fertilized with granular ammonium sulfate, also applied as a triple-split, and irrigated by drip or microsprinklers. Weekly fertigation produced the smallest plants among the four fertilizer application methods at 50 kg·ha(-1) N during the first year after planting but the largest plants at 150 kg·ha(-1) N in both the first and second year. The other application methods required less N to maximize growth but were less responsive than weekly fertigation to additional N fertilizer applications. In fact, 44-50% of the plants died when granular fertilizer was applied at 150 kg·ha(-1) N. By comparison, none of the plants died with weekly fertigation. Plant death with granular fertilizer was associated with high ammonium ion concentrations (up to 650 mg·L(-1)) and electrical conductivity (>3 dS·m(-1)) in the soil solution. Early results indicate that fertigation may be less efficient (i.e., less plant growth per unit of N applied) at lower N rates than granular fertilizer application but is also safer (i.e., less plant death) and promotes more growth when high amounts of N fertilizer is applied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...