Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 108(15): 153601, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22587250

RESUMO

A pulsed cooling scheme for optomechanical systems is presented that is capable of cooling at much faster rates, shorter overall cooling times, and for a wider set of experimental scenarios than is possible by conventional methods. The proposed scheme can be implemented for both strongly and weakly coupled optomechanical systems in both weakly and highly dissipative cavities. We study analytically its underlying working mechanism, which is based on interferometric control of optomechanical interactions, and we demonstrate its efficiency with pulse sequences that are obtained by using methods from optimal control. The short time in which our scheme approaches the optomechanical ground state allows for a significant relaxation of current experimental constraints. Finally, the framework presented here can be used to create a rich variety of optomechanical interactions and hence offers a novel, readily available toolbox for fast optomechanical quantum control.

2.
Phys Rev Lett ; 104(18): 183001, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20482169

RESUMO

Currently, laser cooling schemes are fundamentally based on the weak coupling regime. This requirement sets the trap frequency as an upper bound to the cooling rate. In this work we present a numerical study that shows the feasibility of cooling in the strong-coupling regime which then allows cooling rates that are faster than the trap frequency with experimentally feasible parameters. The scheme presented here can be applied to trapped atoms or ions as well as to mechanical oscillators. It can also cool medium sized ion chains close to the ground state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA