Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 399(1): 171-81, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20628875

RESUMO

Potentiometry is a very simple electrochemical technique with extraordinary analytical capabilities. It is also well known that nanostructured materials display properties which they do not show in the bulk phase. The combination of the two fields of potentiometry and nanomaterials is therefore a promising area of research and development. In this report, we explain the fundamentals of potentiometric devices that incorporate nanostructured materials and we highlight the advantages and drawbacks of combining nanomaterials and potentiometry. The paper provides an overview of the role of nanostructured materials in the two commonest potentiometric sensors: field-effect transistors and ion-selective electrodes. Additionally, we provide a few recent examples of new potentiometric sensors that are based on receptors immobilized directly onto the nanostructured material surface. Moreover, we summarize the use of potentiometry to analyze processes involving nanostructured materials and the prospects that the use of nanopores offer to potentiometry. Finally, we discuss several difficulties that currently hinder developments in the field and some future trends that will extend potentiometry into new analytical areas such as biology and medicine.

2.
Anal Chem ; 82(19): 8106-12, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20809625

RESUMO

Surfaces made of entangled networks of single-walled carbon nanotubes (SWCNTs) display a strong adsorption affinity for aromatic hydrocarbons. Adsorption of these compounds onto the walls of SWCNTs changes the electrical characteristics of the SWCNT-solution interface. Using these features, we have developed a potentiometric sensor to detect neutral aromatic species. Specifically, we can detect online aromatic hydrocarbons in industrial coolant water. Our chromatographic results confirm the adsorption of toluene onto the walls of carbon nanotubes, and our impedance spectroscopy data show the change in the double layer capacitance of the carbon nanotube-solution interface upon addition of toluene, thus confirming the proposed sensing mechanism. The sensor showed a toluene concentration dependent EMF response that follows the shape of an adsorption isotherm and displayed an immediate response to the presence of toluene with a detection limit of 2.1 ppm. The sensor does not respond to other nonaromatic hydrocarbons that may coexist with aromatic hydrocarbons in water. It shows a qualitative sensitivity and selectivity of 100% and 83%, respectively, which confirms its ability to detect aromatic hydrocarbons in aqueous solutions. The sensor showed an excellent ability to immediately detect the presence of toluene in actual coolant water. Its operational characteristics, including its fast response, low cost, portability, and easy use in online industrial applications, improve those of current chromatographic or spectroscopic techniques.


Assuntos
Hidrocarbonetos Aromáticos/análise , Nanotubos de Carbono/química , Potenciometria/métodos , Adsorção , Espectroscopia Dielétrica , Cromatografia Gasosa-Espectrometria de Massas , Tolueno/análise , Água/química
3.
Anal Bioanal Chem ; 395(7): 2371-6, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19760402

RESUMO

Multi-walled carbon nanotubes (MWCNT) are shown to be efficient transducers of the ionic-to-electronic current. This enables the development of a new solid-contact pH-selective electrode that is based on the deposition of a 35-microm thick layer of MWCNT between the acrylic ion-selective membrane and the glassy carbon rod used as the electrical conductor. The ion-selective membrane was prepared by incorporating tridodecylamine as the ionophore, potassium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate as the lipophilic additive in a polymerized methylmethacrylate and an n-butyl acrylate matrix. The potentiometric response shows Nernstian behaviour and a linear dynamic range between 2.89 and 9.90 pH values. The response time for this electrode was less than 10 s throughout the whole working range. The electrode shows a high selectivity towards interfering ions. Electrochemical impedance spectroscopy and chronopotentiometry techniques were used to characterise the electrochemical behaviour and the stability of the carbon-nanotube-based ion-selective electrodes.

4.
Anal Chem ; 81(2): 676-81, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19093752

RESUMO

Porous carbon materials and carbon nanotubes were recently used as solid contacts in ion-selective electrodes (ISE), and the signal transduction mechanism of these carbon-based materials is therefore of great interest. In this work the ion-to-electron transduction mechanism of carbon nanotubes is studied by using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Single-walled carbon nanotubes (SWCNT) are deposited on glassy carbon (GC) disk electrodes by repetitive spraying, resulting in SWCNT layers with thicknesses of 10, 35, and 50 mum. The impedance spectra of these GC/SWCNT electrodes in contact with aqueous electrolyte solution show a very small resistance and a large bulk capacitance that is related to a large effective double layer at the SWCNT/electrolyte interface. Interestingly, the impedance response of GC/SWCNT is very similar to that of poly(3,4-ethylenedioxythiophene) (PEDOT) film electrodes studied earlier under the same experimental conditions. The same equivalent circuit is valid for both types of materials. The reason is that both materials can be described schematically as an asymmetric capacitor where one side is formed by electronic charge (electrons/holes) in the SWCNT wall or along the conjugated polymer chain of PEDOT and the other side is formed by ions (anions/cations) in the solution (or in the ion-selective membrane when used as a solid contact in ISE).

5.
Anal Chem ; 80(4): 1316-22, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18271511

RESUMO

This study developed a new type of all-solid-state ion-selective electrode based on a transducing layer of a network of single-walled carbon nanotubes. The extraordinary capacity of carbon nanotubes to promote electron transfer between heterogeneous phases made the presence of electroactive polymers or any other ion-to-electron-transfer promoter unnecessary. The new transducer layer was characterized by environmental scanning electron microscopy and electrochemical impedance spectroscopy. The stability of the electrical potential of the new solid-contact electrode was examined by performing current-reversal chronopotentiometry, and the influence of the interfacial water film was assessed by the potentiometric water layer test. The performance of the new electrode was evaluated by determining K+ with an ion-selective membrane that contained the well-known valinomycin ion carrier. The new electrode had a Nernstian slope (58.4 mV/decade), dynamic ranges of four logarithmic units, and selectivities and limits of detection comparable to other solid-contact electrodes. The short response time (less than 10 s for activities higher than 10(-5.5) M) and the stability of the signal over several days makes these new electrodes very promising candidates for attaining true miniaturization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...