Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 17(1): 21-27, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28073255

RESUMO

Understanding the mechanism and limits of strain transfer between supported 2D systems and their substrate is a most needed step toward the development of strain engineering at the nanoscale. This includes applications in straintronics, nanoelectromechanical devices, or new nanocomposites. Here, we have studied the limits of biaxial compressive strain transfer among SiO2, diamond, and sapphire substrates and graphene. Using high pressure-which allows maximizing the adhesion between graphene and the substrate on which it is deposited-we show that the relevant parameter governing the graphene mechanical response is not the applied pressure but rather the strain that is transmitted from the substrate. Under these experimental conditions, we also show the existence of a critical biaxial stress beyond which strain transfer become partial and introduce a parameter, α, to characterize strain transfer efficiency. The critical stress and α appear to be dependent on the nature of the substrate. Under ideal biaxial strain transfer conditions, the phonon Raman G-band dependence with strain appears to be linear with a slope of -60 ± 3 cm-1/% down to biaxial strains of -0.9%. This evolution appears to be general for both biaxial compression and tension for different experimental setups, at least in the biaxial strain range -0.9% < ε < 1.8%, thus providing a criterion to validate total biaxial strain transfer hypotheses. These results invite us to cast a new look at mechanical strain experiments on deposited graphene as well as to other 2D layered materials.

2.
Phys Rev Lett ; 113(2): 025506, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25062208

RESUMO

Perfectly crystalline solids are excellent heat conductors. Prominent counterexamples are intermetallic clathrates, guest-host systems with a high potential for thermoelectric applications due to their ultralow thermal conductivities. Our combined experimental and theoretical investigation of the lattice dynamics of a particularly simple binary representative, Ba(8)Si(46), identifies the mechanism responsible for the reduction of lattice thermal conductivity intrinsic to the perfect crystal structure. Above a critical wave vector, the purely harmonic guest-host interaction leads to a drastic transfer of spectral weight to the guest atoms, corresponding to a localization of the propagative phonons.

3.
J Colloid Interface Sci ; 376(1): 262-8, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22472512

RESUMO

In this work, we study the adhesion forces between atomic force microscopy (AFM) tips and superficial dentin etched with phosphoric acid. Initially, we quantitatively analyze the effect of acid etching on the surface heterogeneity and the surface roughness, two parameters that play a key role in the adhesion phenomenon. From a statistical study of the force-distance curves, we determine the average adhesion forces on the processed substrates. Our results show that the average adhesion forces, measured in water, increase linearly with the acid exposure time. The highest values of such forces are ascribed to the high density of collagen fibers on the etched surfaces. The individual contribution of exposed collagen fibrils to the adhesion force is highlighted. We also discuss in this paper the influence of the environmental medium (water/air) in the adhesion measurements. We show that the weak forces involved require working in the aqueous medium.


Assuntos
Dentina/ultraestrutura , Microscopia de Força Atômica , Dente Serotino/ultraestrutura , Condicionamento Ácido do Dente , Colágeno/química , Dentina/química , Humanos , Microscopia de Força Atômica/instrumentação , Dente Serotino/química , Análise Espectral Raman , Propriedades de Superfície
4.
J Phys Condens Matter ; 22(31): 315401, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-21399361

RESUMO

Angle-resolved synchrotron radiation diffraction was used to investigate lithium potassium sulfate (LiKSO(4)) crystals under high pressure. We confirm that the title compound undergoes three phase transitions, α →ß, ß â†’ γ and γ →δ, observed at around 0.8 GPa, 4.0 GPa and 7.0 GPa, respectively. Two competitive structures are proposed for the ß-phase after powder diffraction data Rietveld refinements: an orthorhombic (space group Cmc 2(1)) or a monoclinic (space group Cc) structure. These structures correspond to the models of the low temperature phases. The γ-phase is indexed by a monoclinic structure. Finally, the δ-phase is found to be highly disordered. No evidence of any pressure-induced amorphous phase was observed up to 24 GPa, even under imposed highly non-hydrostatic conditions, contrary to previous propositions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...