Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Innate Immun ; 7(2): 187-98, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25358860

RESUMO

After phagocytosis by macrophages, Staphylococcus aureus evades killing in an α-toxin-dependent manner, and then prevents apoptosis of infected cells by upregulating expression of antiapoptotic genes like MCL-1 (myeloid cell leukemia-1). Here, using purified α-toxin and a set of hla-deficient strains, we show that α-toxin is critical for the induction of MCL-1 expression and the cytoprotection of infected macrophages. Extracellular or intracellular treatment of macrophages with α-toxin alone did not induce cytoprotection conferred by increased Mcl-1, suggesting that the process is dependent on the production of α-toxin by intracellular bacteria. The increased expression of MCL-1 in infected cells was associated with enhanced NFκB activation, and subsequent IL-6 secretion. This effect was only partially inhibited by blocking TLR2, which suggests the participation of intracellular receptors in the specific recognition of S. aureus strains secreting α-toxin. Thus, S. aureus recognition by intracellular receptors and/or activation of downstream pathways leading to Mcl-1 expression is facilitated by α-toxin released by intracellular bacteria which permeabilize phagosomes, ensuring pathogen access to the cytoplasmatic compartment. Given that the intracellular survival of S. aureus depends on α-toxin, we propose a novel role for this agent in the protection of the intracellular niche, and further dissemination of staphylococci by infected macrophages.


Assuntos
Toxinas Bacterianas/metabolismo , Citoproteção , Proteínas Hemolisinas/metabolismo , Macrófagos/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Toxinas Bacterianas/genética , Células Cultivadas , Proteínas Hemolisinas/genética , Humanos , Evasão da Resposta Imune , Interleucina-6/metabolismo , Macrófagos/microbiologia , Mutação/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , NF-kappa B/metabolismo , Fagocitose , Infecções Estafilocócicas/transmissão , Staphylococcus aureus/patogenicidade , Receptor 2 Toll-Like/metabolismo , Fatores de Virulência
2.
Mediators Inflamm ; 2013: 427021, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23431241

RESUMO

As a facultative intracellular pathogen, Staphylococcus aureus invades macrophages and then promotes the cytoprotection of infected cells thus stabilizing safe niche for silent persistence. This process occurs through the upregulation of crucial antiapoptotic genes, in particular, myeloid cell leukemia-1 (MCL-1). Here, we investigated the underlying mechanism and signal transduction pathways leading to increased MCL-1 expression in infected macrophages. Live S. aureus not only stimulated de novo synthesis of Mcl-1, but also prolonged the stability of this antiapoptotic protein. Consistent with this, we proved a crucial role of Mcl-1 in S. aureus-induced cytoprotection, since silencing of MCL1 by siRNA profoundly reversed the cytoprotection of infected cells leading to apoptosis. Increased MCL1 expression in infected cells was associated with enhanced NFκB activation and subsequent IL-6 secretion, since the inhibition of both NFκB and IL-6 signalling pathways abrogated Mcl-1 induction and cytoprotection. Finally, we confirmed our observation in vivo in murine model of septic arthritis showing the association between the severity of arthritis and Mcl-1 expression. Therefore, we propose that S. aureus is hijacking the Mcl-1-dependent inhibition of apoptosis to prevent the elimination of infected host cells, thus allowing the intracellular persistence of the pathogen, its dissemination by infected macrophages, and the progression of staphylococci diseases.


Assuntos
Macrófagos/metabolismo , Macrófagos/microbiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Staphylococcus aureus/patogenicidade , Animais , Apoptose/genética , Apoptose/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Humanos , Immunoblotting , Interleucina-6/metabolismo , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
PLoS One ; 4(4): e5210, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19381294

RESUMO

It is becoming increasingly apparent that Staphylococcus aureus are able to survive engulfment by macrophages, and that the intracellular environment of these host cells, which is essential to innate host defenses against invading microorganisms, may in fact provide a refuge for staphylococcal survival and dissemination. Based on this, we postulated that S. aureus might induce cytoprotective mechanisms by changing gene expression profiles inside macrophages similar to obligate intracellular pathogens, such as Mycobacterium tuberculosis. To validate our hypothesis we first ascertained whether S. aureus infection could affect programmed cell death in human (hMDMs) and mouse (RAW 264.7) macrophages and, specifically, protect these cells against apoptosis. Our findings indicate that S. aureus-infected macrophages are more resistant to staurosporine-induced cell death than control cells, an effect partly mediated via the inhibition of cytochrome c release from mitochondria. Furthermore, transcriptome analysis of human monocyte-derived macrophages during S. aureus infection revealed a significant increase in the expression of antiapoptotic genes. This was confirmed by quantitative RT-PCR analysis of selected genes involved in mitochondria-dependent cell death, clearly showing overexpression of BCL2 and MCL1. Cumulatively, the results of our experiments argue that S. aureus is able to induce a cytoprotective effect in macrophages derived from different mammal species, which can prevent host cell elimination, and thus allow intracellular bacterial survival. Ultimately, it is our contention that this process may contribute to the systemic dissemination of S. aureus infection.


Assuntos
Apoptose/genética , Macrófagos/imunologia , Fagocitose , Staphylococcus aureus/imunologia , Regulação para Cima , Animais , Sequência de Bases , Western Blotting , Células Cultivadas , Primers do DNA , Citometria de Fluxo , Expressão Gênica , Humanos , Camundongos , Microscopia de Fluorescência , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
PLoS One ; 3(1): e1409, 2008 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18183290

RESUMO

Although considered to be an extracellular pathogen, Staphylococcus aureus is able to invade a variety of mammalian, non-professional phagocytes and can also survive engulfment by professional phagocytes such as neutrophils and monocytes. In both of these cell types S. aureus promptly escapes from the endosomes/phagosomes and proliferates within the cytoplasm, which quickly leads to host cell death. In this report we show that S. aureus interacted with human monocyte-derived macrophages in a very different way to those of other mammalian cells. Upon phagocytosis by macrophages, S. aureus persisted intracellularly in vacuoles for 3-4 days before escaping into the cytoplasm and causing host cell lysis. Until the point of host cell lysis the infected macrophages showed no signs of apoptosis or necrosis and were functional. They were able to eliminate intracellular staphylococci if prestimulated with interferon-gamma at concentrations equivalent to human therapeutic doses. S. aureus survival was dependent on the alternative sigma factor B as well as the global regulator agr, but not SarA. Furthermore, isogenic mutants deficient in alpha-toxin, the metalloprotease aureolysin, protein A, and sortase A were efficiently killed by macrophages upon phagocytosis, although with different kinetics. In particular alpha-toxin was a key effector molecule that was essential for S. aureus intracellular survival in macrophages. Together, our data indicate that the ability of S. aureus to survive phagocytosis by macrophages is determined by multiple virulence factors in a way that differs considerably from its interactions with other cell types. S. aureus persists inside macrophages for several days without affecting the viability of these mobile cells which may serve as vehicles for the dissemination of infection.


Assuntos
Atividade Bactericida do Sangue , Macrófagos/imunologia , Monócitos/imunologia , Fagocitose , Staphylococcus aureus/fisiologia , Humanos , Macrófagos/microbiologia , Monócitos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...