Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(681): eabq5241, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36724238

RESUMO

In October 2019, Novartis launched brolucizumab, a single-chain variable fragment molecule targeting vascular endothelial growth factor A, for the treatment of neovascular age-related macular degeneration. In 2020, rare cases of retinal vasculitis and/or retinal vascular occlusion (RV/RO) were reported, often during the first few months after treatment initiation, consistent with a possible immunologic pathobiology. This finding was inconsistent with preclinical studies in cynomolgus monkeys that demonstrated no drug-related intraocular inflammation, or RV/RO, despite the presence of preexisting and treatment-emergent antidrug antibodies (ADAs) in some animals. In this study, the immune response against brolucizumab in humans was assessed using samples from clinical trials and clinical practice. In the brolucizumab-naïve population, anti-brolucizumab ADA responses were detected before any treatment, which was supported by the finding that healthy donors can harbor brolucizumab-specific B cells. This suggested prior exposure of the immune system to proteins with structural similarity. Experiments on samples showed that naïve and brolucizumab-treated ADA-positive patients developed a class-switched, high-affinity immune response, with several linear epitopes being recognized by ADAs. Only patients with RV/RO showed a meaningful T cell response upon recall with brolucizumab. Further studies in cynomolgus monkeys preimmunized against brolucizumab with adjuvant followed by intravitreal brolucizumab challenge demonstrated that high ADA titers were required to generate ocular inflammation and vasculitis/vascular thrombosis, comparable to RV/RO in humans. Immunogenicity therefore seems to be a prerequisite to develop RV/RO. However, because only 2.1% of patients with ADA develop RV/RO, additional factors must play a role in the development of RV/RO.


Assuntos
Vasculite Retiniana , Animais , Humanos , Adjuvantes Imunológicos , Inibidores da Angiogênese , Inflamação , Injeções Intravítreas , Macaca fascicularis , Fator A de Crescimento do Endotélio Vascular
2.
World J Gastrointest Pathophysiol ; 8(4): 161-175, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29184702

RESUMO

AIM: To examine the role that enzyme Acyl-CoA:diacylglycerol acyltransferase-1 (DGAT1) plays in postprandial gut peptide secretion and signaling. METHODS: The standard experimental paradigm utilized to evaluate the incretin response was a lipid challenge. Following a lipid challenge, plasma was collected via cardiac puncture at each time point from a cohort of 5-8 mice per group from baseline at time zero to 10 h. Incretin hormones [glucagon like peptide-1 (GLP-1), peptide tyrosine-tyrosine (PYY) and glucose dependent insulinotropic polypeptide (GIP)] were then quantitated. The impact of pharmacological inhibition of DGAT1 on the incretin effect was evaluated in WT mice. Additionally, a comparison of loss of DGAT1 function either by genetic ablation or pharmacological inhibition. To further elucidate the pathways and mechanisms involved in the incretin response to DGAT1 inhibition, other interventions [inhibitors of dipeptidyl peptidase-IV (sitagliptin), pancreatic lipase (Orlistat), GPR119 knockout mice] were evaluated. RESULTS: DGAT1 deficient mice and wildtype C57/BL6J mice were lipid challenged and levels of both active and total GLP-1 in the plasma were increased. This response was further augmented with DGAT1 inhibitor PF-04620110 treated wildtype mice. Furthermore, PF-04620110 was able to dose responsively increase GLP-1 and PYY, but blunt GIP at all doses of PF-04620110 during lipid challenge. Combination treatment of PF-04620110 and Sitagliptin in wildtype mice during a lipid challenge synergistically enhanced postprandial levels of active GLP-1. In contrast, in a combination study with Orlistat, the ability of PF-04620110 to elicit an enhanced incretin response was abrogated. To further explore this observation, GPR119 knockout mice were evaluated. In response to a lipid challenge, GPR119 knockout mice exhibited no increase in active or total GLP-1 and PYY. However, PF-04620110 was able to increase total GLP-1 and PYY in GPR119 knockout mice as compared to vehicle treated wildtype mice. CONCLUSION: Collectively, these data provide some insight into the mechanism by which inhibition of DGAT1 enhances intestinal hormone release.

3.
J Pharmacol Exp Ther ; 361(2): 303-311, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28289077

RESUMO

Diabetic nephropathy remains an area of high unmet medical need, with current therapies that slow down, but do not prevent, the progression of disease. A reduced phosphorylation state of adenosine monophosphate-activated protein kinase (AMPK) has been correlated with diminished kidney function in both humans and animal models of renal disease. Here, we describe the identification of novel, potent, small molecule activators of AMPK that selectively activate AMPK heterotrimers containing the ß1 subunit. After confirming that human and rodent kidney predominately express AMPK ß1, we explore the effects of pharmacological activation of AMPK in the ZSF1 rat model of diabetic nephropathy. Chronic administration of these direct activators elevates the phosphorylation of AMPK in the kidney, without impacting blood glucose levels, and reduces the progression of proteinuria to a greater degree than the current standard of care, angiotensin-converting enzyme inhibitor ramipril. Further analyses of urine biomarkers and kidney tissue gene expression reveal AMPK activation leads to the modulation of multiple pathways implicated in kidney injury, including cellular hypertrophy, fibrosis, and oxidative stress. These results support the need for further investigation into the potential beneficial effects of AMPK activation in kidney disease.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminopiridinas/farmacologia , Nefropatias Diabéticas/tratamento farmacológico , Ativadores de Enzimas/farmacologia , Indóis/farmacologia , Rim/efeitos dos fármacos , Aminopiridinas/uso terapêutico , Animais , Tamanho Celular , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Ativação Enzimática , Fibrose , Humanos , Indóis/uso terapêutico , Isoenzimas/metabolismo , Rim/metabolismo , Rim/patologia , Testes de Função Renal , Macaca fascicularis , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Fosforilação , Proteinúria/tratamento farmacológico , Proteinúria/metabolismo , Ratos , Especificidade da Espécie
4.
Am J Physiol Gastrointest Liver Physiol ; 304(11): G958-69, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23558010

RESUMO

Alterations in fat metabolism, in particular elevated plasma concentrations of free fatty acids and triglycerides (TG), have been implicated in the pathogenesis of Type 2 diabetes, obesity, and cardiovascular disease. Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), a member of the large family of membrane-bound O-acyltransferases, catalyzes the final step in triacylglycerol formation. In the intestine, DGAT1 is one of the acyltransferases responsible for the reesterficiation of dietary TG. Following a single dose of a selective pharmacological inhibitor of DGAT1, PF-04620110, a dose-dependent inhibition of TG and vitamin A absorption postprandially was demonstrated in rodents and human subjects. In C57/BL6J mice, acute DGAT1 inhibition alters the temporal and spatial pattern of dietary lipid absorption. To understand the impact of DGAT1 inhibition on enterocyte lipid metabolism, lipomic profiling was performed in rat intestine and plasma as well as human plasma. DGAT1 inhibition causes an enrichment of polyunsaturated fatty acids within the TG class of lipids. This pharmacological intervention gives us insight as to the role of DGAT1 in human dietary lipid absorption.


Assuntos
Diacilglicerol O-Aciltransferase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Absorção Intestinal/efeitos dos fármacos , Oxazepinas/farmacologia , Adolescente , Adulto , Animais , Estudos de Casos e Controles , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Gorduras na Dieta/sangue , Gorduras na Dieta/metabolismo , Relação Dose-Resposta a Droga , Enterócitos/metabolismo , Inibidores Enzimáticos/farmacocinética , Ácidos Graxos Insaturados/sangue , Ácidos Graxos Insaturados/metabolismo , Feminino , Humanos , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Oxazepinas/farmacocinética , Período Pós-Prandial , Ratos , Ratos Sprague-Dawley , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Vitamina A/metabolismo
5.
Am J Physiol Lung Cell Mol Physiol ; 298(6): L775-83, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20172952

RESUMO

Mechanical forces are critical for fetal lung development. Using surfactant protein C (SP-C) as a marker, we previously showed that stretch-induced fetal type II cell differentiation is mediated via the ERK pathway. Caveolin-1, a major component of the plasma membrane microdomains, is important as a signaling protein in blood vessels exposed to shear stress. Its potential role in mechanotransduction during fetal lung development is unknown. Caveolin-1 is a marker of type I epithelial cell phenotype. In this study, using immunocytochemistry, Western blotting, and immunogold electron microscopy, we first demonstrated the presence of caveolin-1 in embryonic day 19 (E19) rat fetal type II epithelial cells. By detergent-free purification of lipid raft-rich membrane fractions and fluorescence immunocytochemistry, we found that mechanical stretch translocates caveolin-1 from the plasma membrane to the cytoplasm. Disruption of the lipid rafts with cholesterol-chelating agents further increased stretch-induced ERK activation and SP-C gene expression compared with stretch samples without disruptors. Similar results were obtained when caveolin-1 gene was knocked down by small interference RNA. In contrast, adenovirus overexpression of the wild-type caveolin-1 or delivery of caveolin-1 scaffolding domain peptide inside the cells decreased stretch-induced ERK phosphorylation and SP-C mRNA expression. In conclusion, our data suggest that caveolin-1 is present in E19 fetal type II epithelial cells. Caveolin-1 is translocated from the plasma membrane to the cytoplasm by mechanical stretch and functions as an inhibitory protein in stretch-induced type II cell differentiation via the ERK pathway.


Assuntos
Caveolina 1/fisiologia , Células Epiteliais/fisiologia , Pulmão/embriologia , Mecanotransdução Celular , Estresse Mecânico , Animais , Diferenciação Celular/fisiologia , Ciclodextrinas/farmacologia , Regulação para Baixo , Ativação Enzimática , Células Epiteliais/citologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/fisiologia , Gravidez , Proteína C Associada a Surfactante Pulmonar/metabolismo , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley
6.
J Physiol ; 587(Pt 8): 1739-53, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19237431

RESUMO

The mechanisms by which mechanical forces promote fetal lung development are not fully understood. Here, we investigated differentiation of fetal type II epithelial cells via the epidermal growth factor receptor (EGFR) in response to mechanical strain. First, we showed that incubation of embryonic day (E) 19 fetal type II cells with recombinant heparin-binding EGF-like growth factor (HB-EGF) or transforming growth factor (TGF)-alpha, but not with amphiregulin (AR), betacellulin (BTC) or epiregulin (EPR), increased fetal type II cell differentiation, as measured by surfactant protein B/C mRNA and protein levels. Next, we demonstrated that 5% cyclic stretch of E19 monolayers transfected with plasmid encoding alkaline phosphatase (AP)-tagged ligands shed mature HB-EGF and TGF-alpha into the supernatant and promoted type II cell differentiation. Release of these ligands was also observed in E19 cells subjected to higher degrees of cyclic strain, but not in cells exposed to continuous stretch. Interestingly, the addition of fibroblasts to type II cell cultures did not enhance release of HB-EGF. Whereas HB-EGF shedding was also detected in E18 cells exposed to 5% cyclic stretch, release of this ligand after 2.5% sustained stretch was restricted to cells isolated on E18 of gestation. In addition, mechanical stretch released EGF, AR and BTC. We conclude that mechanical stretch promotes fetal type II cell differentiation via ectodomain shedding of HB-EGF and TGF-alpha. The magnitude of shedding varied depending on gestational age, ligand, and strain protocol. These studies provide novel mechanistic information potentially relevant to fetal lung development and to mechanical ventilation-induced lung injury.


Assuntos
Diferenciação Celular/fisiologia , Células Epiteliais/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pulmão/embriologia , Pulmão/fisiologia , Receptores Pulmonares de Alongamento/fisiologia , Fator de Crescimento Transformador alfa/metabolismo , Animais , Northern Blotting , Diferenciação Celular/efeitos dos fármacos , Separação Celular , Eletroporação , Células Epiteliais/efeitos dos fármacos , Feminino , Fibroblastos/fisiologia , Idade Gestacional , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Microscopia de Fluorescência , Estimulação Física , Gravidez , Receptores Pulmonares de Alongamento/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
7.
Exp Lung Res ; 34(10): 663-80, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19085564

RESUMO

Mechanical forces are critical for normal fetal lung development. However, the signaling events that promote lung maturation are not fully understood. In this study, the authors analyzed the role of Rho family guanidine triphosphatases (GTPases) in isolated embryonic day 19 (E19) fetal type II epithelial cells exposed to 5% cyclic stretch. The results showed that mechanical strain stimulated RhoA within 5 minutes of initiation of force. Rac1 was also activated, but not Cdc42. After 6 hours of equibiaxial stretch, actin filaments were oriented parallel to the long axis of the cells. By 16 hours, actin fibers still maintained the same orientation, but their intensity decreased when compared to 6 hours. These findings temporally correlated with a decrease in RhoA stimulation. Using adenoviruses encoding dominant negative mutants of RhoA and Rac1, the authors observed that both GTPases are important for strain-induced stress fiber formation, cell alignment, and extracellular signal-regulated kinase (ERK) phosphorylation. However, whereas inhibition of Rho increased surfactant protein C (SP-C) mRNA expression (a marker of type II cell differentiation), suppression of Rac had no effects. These studies suggest that RhoA and Rac1 regulate actin remodeling and cell alignment in fetal type II cells exposed to mechanical stretch. RhoA is a negative regulator of stretch-induced type II cell maturation.


Assuntos
Actinas/metabolismo , Células Epiteliais/citologia , Pulmão/embriologia , Proteínas rac1 de Ligação ao GTP/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia , Animais , Diferenciação Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Fosforilação , Gravidez , Ratos , Ratos Sprague-Dawley , Estresse Mecânico
8.
Am J Physiol Lung Cell Mol Physiol ; 294(2): L225-32, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18065656

RESUMO

Mechanical ventilation plays a central role in the pathogenesis of bronchopulmonary dysplasia. However, the mechanisms by which excessive stretch of fetal or neonatal type II epithelial cells contributes to lung injury are not well defined. In these investigations, isolated embryonic day 19 fetal rat type II epithelial cells were cultured on substrates coated with fibronectin and exposed to 5% or 20% cyclic stretch to simulate mechanical forces during lung development or lung injury, respectively. Twenty percent stretch of fetal type II epithelial cells increased necrosis, apoptosis, and proliferation compared with control, unstretched samples. By ELISA and real-time PCR (qRT-PCR), 20% stretch increased secretion of IL-8 into the media and IL-8 gene expression and inhibited IL-10 release. Interestingly, administration of recombinant IL-10 before 20% stretch did not affect cell lysis but significantly reduced apoptosis and IL-8 release compared with stretched samples without IL-10. Collectively, our studies suggest that IL-10 may play an important role in protection of fetal type II epithelial cells from injury secondary to stretch.


Assuntos
Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Feto/citologia , Feto/efeitos dos fármacos , Interleucina-10/farmacologia , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/efeitos dos fármacos , Animais , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-10/administração & dosagem , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Ratos , Estresse Mecânico , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
9.
Pediatr Res ; 60(2): 118-24, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16864689

RESUMO

Mechanical forces are essential for normal fetal lung development. However, the cellular and molecular mechanisms regulating this process are still poorly defined. In this study, we used oligonucleotide microarrays to investigate gene expression in cultured embryonic d 19 rat fetal lung type II epithelial cells exposed to a level of mechanical strain similar to the developing lung. Significance Analysis of Microarrays (SAM) identified 92 genes differentially expressed by strain. Interestingly, several members of the solute carrier family of amino acid transporter (Slc7a1, Slc7a3, Slc6a9, and tumor-associated protein 1) genes involved in amino acid synthesis (Phgdh, Psat1, Psph, Cars, and Asns), as well as the amiloride-sensitive epithelial sodium channel gene (Scnn1a) were up-regulated by the application of force. These results were confirmed by quantitative real-time PCR (qRT-PCR). Thus, this study identifies genes induced by strain that may be important for amino acid signaling pathways and protein synthesis in fetal type II cells. In addition, these data suggest that mechanical forces may contribute to facilitate lung fluid reabsorption in preparation for birth. Taken together, the present investigation provides further insights into how mechanical forces may modulate fetal lung development.


Assuntos
Desenvolvimento Fetal/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Pulmão/crescimento & desenvolvimento , Aminoácidos/metabolismo , Animais , Transporte Biológico/genética , Membrana Celular , Células Epiteliais/metabolismo , Feto/metabolismo , Expressão Gênica , Pulmão/citologia , Pulmão/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Sprague-Dawley , Sódio/metabolismo , Estresse Mecânico
10.
Am J Physiol Lung Cell Mol Physiol ; 291(4): L820-7, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16751225

RESUMO

The signaling pathways by which mechanical forces modulate fetal lung development remain largely unknown. In the present study, we tested the hypothesis that strain-induced fetal type II cell differentiation is mediated via the cAMP signaling pathway. Freshly isolated E19 fetal type II epithelial cells were cultured on collagen-coated silastic membranes and exposed to mechanical strain for varying intervals, to simulate mechanical forces during lung development. Unstretched samples were used as controls. Mechanical strain activated heterotrimeric G-protein alpha(s) subunit, cAMP, and the transcription factor cAMP response element binding protein (CREB). Incubation of E19 cells with the PKA inhibitor H-89 significantly decreased strain-induced CREB phosphorylation. Moreover, adenylate cyclase 5 and CREB genes were also mechanically induced. In contrast, components of the PKA-independent (Epac) pathway, including Rap-1 or B-Raf, were not phosphorylated by strain. The addition of forskolin or dibutyryl cAMP to unstretched E19 monolayers markedly upregulated expression of the type II cell differentiation marker surfactant protein C, whereas the Epac agonist 8-pCPT-2'-O-Me-cAMP had no effect. Furthermore, incubation of E19 cells with the PKA inhibitor Rp-2'-O-monobutyryladenosine 3',5'-cyclic monophosphorothioate or transient transfection with plasmid DNA containing a PKA inhibitor expression vector significantly decreased strain-induced surfactant protein C mRNA expression. In conclusion, these studies indicate that the cAMP-PKA-dependent signaling pathway is activated by force in fetal type II cells and participates in strain-induced fetal type II cell differentiation.


Assuntos
Diferenciação Celular/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Pulmão/embriologia , Transdução de Sinais/fisiologia , Animais , AMP Cíclico/agonistas , Proteína Quinase Tipo II Dependente de AMP Cíclico , Células Epiteliais/classificação , Células Epiteliais/citologia , Feto/citologia , Feto/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/fisiologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/fisiologia , Membranas Intracelulares/metabolismo , Pulmão/citologia , Proteína C Associada a Surfactante Pulmonar/genética , Proteína C Associada a Surfactante Pulmonar/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Estresse Mecânico , Fatores de Tempo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...