Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Mol Med ; 19(9): 2193-201, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26033571

RESUMO

The glycolipid glycosylphosphatidylinositol anchor (GPI-A) plays an important role in lipid raft formation, which is required for proper expression on the cell surface of two inhibitors of the complement cascade, CD55 and CD59. The absence of these markers from the surface of blood cells, including erythrocytes, makes the cells susceptible to complement lysis, as seen in patients suffering from paroxysmal nocturnal haemoglobinuria (PNH). However, the explanation for why PNH-affected hematopoietic stem/progenitor cells (HSPCs) expand over time in BM is still unclear. Here, we propose an explanation for this phenomenon and provide evidence that a defect in lipid raft formation in HSPCs leads to defective CXCR4- and VLA-4-mediated retention of these cells in BM. In support of this possibility, BM-isolated CD34(+) cells from PNH patients show a defect in the incorporation of CXCR4 and VLA-4 into membrane lipid rafts, respond weakly to SDF-1 stimulation, and show defective adhesion to fibronectin. Similar data were obtained with the GPI-A(-) Jurkat cell line. Moreover, we also report that chimeric mice transplanted with CD55(-/-)  CD59(-/-) BM cells but with proper GPI-A expression do not expand over time in transplanted hosts. On the basis of these findings, we propose that a defect in lipid raft formation in PNH-mutated HSPCs makes these cells more mobile, so that they expand and out-compete normal HSPCs from their BM niches over time.


Assuntos
Hemoglobinúria Paroxística/metabolismo , Hemoglobinúria Paroxística/patologia , Microdomínios da Membrana/metabolismo , Animais , Antígenos CD/metabolismo , Toxinas Bacterianas/metabolismo , Medula Óssea/patologia , Adesão Celular/efeitos dos fármacos , Quimiocina CXCL12/farmacologia , Quimiotaxia/efeitos dos fármacos , Fibronectinas/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Humanos , Integrina alfa4beta1/metabolismo , Células Jurkat , Microdomínios da Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Haematologica ; 96(10): 1462-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21712540

RESUMO

BACKGROUND: The myeloproliferative neoplasms, essential thrombocytosis, polycythemia vera and primary myelofibrosis, share the same acquired genetic lesion, but the concept of JAK2 V617F serving as the sole lesion responsible for these neoplasms is under question, and there has been interest in identifying additional mutations that may contribute to disease pathogenesis. Because ASXL1 lesions have been increasingly identified in myeloid neoplasms, we examined the relationships of ASXL1 mutation or deletion to both clinical phenotype and associated molecular features in 166 patients with myeloproliferative neoplasms. DESIGN AND METHODS: Exon 12 of ASXL1 was amplified from neutrophil genomic DNA and bidirectionally sequenced in 77 patients with myelofibrosis (including patients with primary and post-essential thrombocytosis or post-polycythemia myelofibrosis), 42 patients with polycythemia vera, 41 with essential thrombocytosis and 6 with post-myelofibrosis acute myeloid leukemia. Pyrosequencing assays were designed to determine the allele percentages of JAK2 V617F (G5073770T), ASXL1 2475dupA, and ASXL1 2846_2847del in neutrophil genomic DNA samples. Clinical and laboratory characteristics of patients with wild-type and ASXL1 mutations were then compared. RESULTS: We identified nonsense mutations or hemizygous deletion of ASXL1 in 36% of the patients with myelofibrosis, but very rarely among those with polycythemia vera or essential thrombocytosis. Among the patients with myelofibrosis, those with ASXL1 lesions were not distinguished from their wild-type counterparts with regard to JAK2 V617F status, exposure to chemotherapy or evolution to leukemia. Myelofibrosis patients with ASXL1 lesions were more likely to have received anemia-directed therapy compared to those without lesions [15/26 (58%) versus 11/39 (23%); P=0.02]. Using serial banked samples and quantitative ASXL1 mutant allele burden assays, we observed the acquisition and accumulation of ASXL1 mutations over time in two patients with post-essential thrombocytosis myelofibrosis. CONCLUSIONS: ASXL1 haploinsufficiency is associated with a myelofibrosis phenotype in the context of other known and unknown lesions, and disruption of ASXL1 function may contribute to the disease pathogenesis of myelofibrosis.


Assuntos
Mutação , Policitemia Vera/genética , Mielofibrose Primária/genética , Proteínas Repressoras/genética , Trombocitose/genética , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Lactente , Recém-Nascido , Cariotipagem , Masculino , Transtornos Mieloproliferativos/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Mielofibrose Primária/diagnóstico , Trombocitemia Essencial/genética , Adulto Jovem
3.
Arch Virol ; 156(10): 1847-51, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21625978

RESUMO

Human cytomegalovirus (HCMV) latency is poorly understood. We previously described a novel HCMV latency-associated transcript, UL81-82ast, coding for a protein designated LUNA (latency unique natural antigen). The aim of this study was to confirm the presence of LUNA in HCMV-seropositive donors. Standard co-immunoprecipitation and ELISA assays were used to detect antibodies against the LUNA protein in the sera of HCMV-seropositive donors. Specific antibodies against LUNA were detected in all HCMV-seropositive donors but in none of the seronegative donors. These data confirm that LUNA is expressed during in vivo infections and is capable of eliciting an immune response.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/genética , Regulação Viral da Expressão Gênica , Proteínas Virais/genética , Anticorpos Antivirais/imunologia , Citomegalovirus/imunologia , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/imunologia , Humanos , Proteínas Virais/imunologia , Latência Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...