Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cell ; 187(1): 166-183.e25, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181739

RESUMO

To better understand intrinsic resistance to immune checkpoint blockade (ICB), we established a comprehensive view of the cellular architecture of the treatment-naive melanoma ecosystem and studied its evolution under ICB. Using single-cell, spatial multi-omics, we showed that the tumor microenvironment promotes the emergence of a complex melanoma transcriptomic landscape. Melanoma cells harboring a mesenchymal-like (MES) state, a population known to confer resistance to targeted therapy, were significantly enriched in early on-treatment biopsies from non-responders to ICB. TCF4 serves as the hub of this landscape by being a master regulator of the MES signature and a suppressor of the melanocytic and antigen presentation transcriptional programs. Targeting TCF4 genetically or pharmacologically, using a bromodomain inhibitor, increased immunogenicity and sensitivity of MES cells to ICB and targeted therapy. We thereby uncovered a TCF4-dependent regulatory network that orchestrates multiple transcriptional programs and contributes to resistance to both targeted therapy and ICB in melanoma.


Assuntos
Melanoma , Humanos , Redes Reguladoras de Genes , Imunoterapia , Melanócitos , Melanoma/tratamento farmacológico , Melanoma/genética , Fator de Transcrição 4/genética , Microambiente Tumoral
2.
Environ Microbiol ; 24(3): 1430-1453, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34995419

RESUMO

Due to an increasing demand for sustainable agricultural practices, the adoption of microbial volatile organic compounds (VOCs) as antagonists against phytopathogens has emerged as an eco-friendly alternative to the use of agrochemicals. Here, we identified three Pseudomonas strains that were able to inhibit, in vitro, up to 80% of mycelial growth of the phytopathogenic fungus Thielaviopsis ethacetica, the causal agent of pineapple sett rot disease in sugarcane. Using GC/MS, we found that these bacteria produced 62 different VOCs, and further functional validation revealed compounds with high antagonistic activity to T. ethacetica. Transcriptomic analysis of the fungal response to VOCs indicated that these metabolites downregulated genes related to fungal central metabolism, such as those involved in carbohydrate metabolism. Interestingly, genes related to the DNA damage response were upregulated, and micro-FTIR analysis corroborated our hypothesis that VOCs triggered DNA damage. Electron microscopy analysis showed critical morphological changes in mycelia treated with VOCs. Altogether, these results indicated that VOCs hampered fungal growth and could lead to cell death. This study represents the first demonstration of the molecular mechanisms involved in the antagonism of sugarcane phytopathogens by VOCs and reinforces that VOCs can be a sustainable alternative for use in phytopathogen biocontrol.


Assuntos
Ascomicetos , Saccharum , Compostos Orgânicos Voláteis , Ascomicetos/metabolismo , Bactérias/metabolismo , Dano ao DNA , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia
3.
Microb Biotechnol ; 14(5): 2101-2115, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34313008

RESUMO

The development of high-performance xylose-fermenting yeast is essential to achieve feasible conversion of biomass-derived sugars in lignocellulose-based biorefineries. However, engineered C5-strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non-obvious regulatory network connection of both metabolisms using time-course transcriptome analysis. Our results indicated the vacuolar Fe2+ /Mn2+ transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3-fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe-S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways.


Assuntos
Proteínas de Transporte de Cátions , Proteínas de Saccharomyces cerevisiae , Biomassa , Fermentação , Engenharia Metabólica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Xilose
4.
Sci Rep, v. 10, 21565, dez. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3407

RESUMO

Schistosoma mansoni is a flatworm that causes schistosomiasis, a neglected tropical disease that affects more than 200 million people worldwide. There is only one drug indicated for treatment, praziquantel, which may lead to parasite resistance emergence. The ribonucleoside analogue 5-azacytidine (5-AzaC) is an epigenetic drug that inhibits S. mansoni oviposition and ovarian development through interference with parasite transcription, translation and stem cell activities. Therefore, studying the downstream pathways affected by 5-AzaC in S. mansoni may contribute to the discovery of new drug targets. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with low or no protein coding potential that have been involved in reproduction, stem cell maintenance and drug resistance. We have recently published a catalog of lncRNAs expressed in S. mansoni life-cycle stages, tissues and single cells. However, it remains largely unknown if lncRNAs are responsive to epigenetic drugs in parasites. Here, we show by RNA-Seq re-analyses that hundreds of lncRNAs are differentially expressed after in vitro 5-AzaC treatment of S. mansoni females, including intergenic, antisense and sense lncRNAs. Many of these lncRNAs belong to co-expression network modules related to male metabolism and are also differentially expressed in unpaired compared with paired females and ovaries. Half of these lncRNAs possess histone marks at their genomic loci, indicating regulation by histone modification. Among a selected set of 8 lncRNAs, half of them were validated by RT-qPCR as differentially expressed in females, and some of them also in males. Interestingly, these lncRNAs are also expressed in other life-cycle stages. This study demonstrates that many lncRNAs potentially involved with S. mansoni reproductive biology are modulated by 5-AzaC and sheds light on the relevance of exploring lncRNAs in response to drug treatments in parasites.

5.
NonCoding RNA, v. 6, n. 2, 15, mar. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3000

RESUMO

Schistosoma japonicum is a flatworm that causes schistosomiasis, a neglected tropical disease. S. japonicum RNA-Seq analyses has been previously reported in the literature on females and males obtained during sexual maturation from 14 to 28 days post-infection in mouse, resulting in the identification of protein-coding genes and pathways, whose expression levels were related to sexual development. However, this work did not include an analysis of long non-coding RNAs (lncRNAs). Here, we applied a pipeline to identify and annotate lncRNAs in 66 S. japonicum RNA-Seq publicly available libraries, from different life-cycle stages. We also performed co-expression analyses to find stage-specific lncRNAs possibly related to sexual maturation. We identified 12,291 S. japonicum expressed lncRNAs. Sequence similarity search and synteny conservation indicated that some 14% of S. japonicum intergenic lncRNAs have synteny conservation with S. mansoni intergenic lncRNAs. Co-expression analyses showed that lncRNAs and protein-coding genes in S. japonicum males and females have a dynamic co-expression throughout sexual maturation, showing differential expression between the sexes; the protein-coding genes were related to the nervous system development, lipid and drug metabolism, and overall parasite survival. Co-expression pattern suggests that lncRNAs possibly regulate these processes or are regulated by the same activation program as that of protein-coding genes.

6.
NonCoding RNA ; 6(2): 15, 2020.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17589

RESUMO

Schistosoma japonicum is a flatworm that causes schistosomiasis, a neglected tropical disease. S. japonicum RNA-Seq analyses has been previously reported in the literature on females and males obtained during sexual maturation from 14 to 28 days post-infection in mouse, resulting in the identification of protein-coding genes and pathways, whose expression levels were related to sexual development. However, this work did not include an analysis of long non-coding RNAs (lncRNAs). Here, we applied a pipeline to identify and annotate lncRNAs in 66 S. japonicum RNA-Seq publicly available libraries, from different life-cycle stages. We also performed co-expression analyses to find stage-specific lncRNAs possibly related to sexual maturation. We identified 12,291 S. japonicum expressed lncRNAs. Sequence similarity search and synteny conservation indicated that some 14% of S. japonicum intergenic lncRNAs have synteny conservation with S. mansoni intergenic lncRNAs. Co-expression analyses showed that lncRNAs and protein-coding genes in S. japonicum males and females have a dynamic co-expression throughout sexual maturation, showing differential expression between the sexes; the protein-coding genes were related to the nervous system development, lipid and drug metabolism, and overall parasite survival. Co-expression pattern suggests that lncRNAs possibly regulate these processes or are regulated by the same activation program as that of protein-coding genes.

7.
Front Genet, v. 10, n. 823, sep. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2842

RESUMO

Long non-coding RNAs (lncRNAs) (>200 nt) are expressed at levels lower than those of the protein-coding mRNAs, and in all eukaryotic model species where they have been characterized, they are transcribed from thousands of different genomic loci. In humans, some four dozen lncRNAs have been studied in detail, and they have been shown to play important roles in transcriptional regulation, acting in conjunction with transcription factors and epigenetic marks to modulate the tissue-type specific programs of transcriptional gene activation and repression. In Schistosoma mansoni, around 10,000 lncRNAs have been identified in previous works. However, the limited number of RNA-sequencing (RNA-seq) libraries that had been previously assessed, together with the use of old and incomplete versions of the S. mansoni genome and protein-coding transcriptome annotations, have hampered the identification of all lncRNAs expressed in the parasite. Here we have used 633 publicly available S. mansoni RNA-seq libraries from whole worms at different stages (n = 121), from isolated tissues (n = 24), from cell-populations (n = 81), and from single-cells (n = 407). We have assembled a set of 16,583 lncRNA transcripts originated from 10,024 genes, of which 11,022 are novel S. mansoni lncRNA transcripts, whereas the remaining 5,561 transcripts comprise 120 lncRNAs that are identical to and 5,441 lncRNAs that have gene overlap with S. mansoni lncRNAs already reported in previous works. Most importantly, our more stringent assembly and filtering pipeline has identified and removed a set of 4,293 lncRNA transcripts from previous publications that were in fact derived from partially processed mRNAs with intron retention. We have used weighted gene co-expression network analyses and identified 15 different gene co-expression modules. Each parasite life-cycle stage has at least one highly correlated gene co-expression module, and each module is comprised of hundreds to thousands lncRNAs and mRNAs having correlated co-expression patterns at different stages. Inspection of the top most highly connected genes within the modules’ networks has shown that different lncRNAs are hub genes at different life-cycle stages, being among the most promising candidate lncRNAs to be further explored for functional characterization.

8.
Front. Genet. ; 10(823)2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17209

RESUMO

Long non-coding RNAs (lncRNAs) (>200 nt) are expressed at levels lower than those of the protein-coding mRNAs, and in all eukaryotic model species where they have been characterized, they are transcribed from thousands of different genomic loci. In humans, some four dozen lncRNAs have been studied in detail, and they have been shown to play important roles in transcriptional regulation, acting in conjunction with transcription factors and epigenetic marks to modulate the tissue-type specific programs of transcriptional gene activation and repression. In Schistosoma mansoni, around 10,000 lncRNAs have been identified in previous works. However, the limited number of RNA-sequencing (RNA-seq) libraries that had been previously assessed, together with the use of old and incomplete versions of the S. mansoni genome and protein-coding transcriptome annotations, have hampered the identification of all lncRNAs expressed in the parasite. Here we have used 633 publicly available S. mansoni RNA-seq libraries from whole worms at different stages (n = 121), from isolated tissues (n = 24), from cell-populations (n = 81), and from single-cells (n = 407). We have assembled a set of 16,583 lncRNA transcripts originated from 10,024 genes, of which 11,022 are novel S. mansoni lncRNA transcripts, whereas the remaining 5,561 transcripts comprise 120 lncRNAs that are identical to and 5,441 lncRNAs that have gene overlap with S. mansoni lncRNAs already reported in previous works. Most importantly, our more stringent assembly and filtering pipeline has identified and removed a set of 4,293 lncRNA transcripts from previous publications that were in fact derived from partially processed mRNAs with intron retention. We have used weighted gene co-expression network analyses and identified 15 different gene co-expression modules. Each parasite life-cycle stage has at least one highly correlated gene co-expression module, and each module is comprised of hundreds to thousands lncRNAs and mRNAs having correlated co-expression patterns at different stages. Inspection of the top most highly connected genes within the modules’ networks has shown that different lncRNAs are hub genes at different life-cycle stages, being among the most promising candidate lncRNAs to be further explored for functional characterization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...