Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 52(14): 3394-403, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23669856

RESUMO

Modern coronagraphic systems require very precise alignment between optical components and can benefit greatly from automated image processing. We discuss three techniques commonly employed in the fields of computer vision and image analysis as applied to the Gemini Planet Imager, a new facility instrument for the Gemini South Observatory. We describe how feature extraction and clustering methods can be used to aid in automated system alignment tasks, and also present a search algorithm for finding regular features in science images used for calibration and data processing. Along with discussions of each technique, we present our specific implementation and show results of each one in operation.

2.
Science ; 339(6126): 1398-401, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23493423

RESUMO

Determining the atmospheric structure and chemical composition of an exoplanet remains a formidable goal. Fortunately, advancements in the study of exoplanets and their atmospheres have come in the form of direct imaging--spatially resolving the planet from its parent star--which enables high-resolution spectroscopy of self-luminous planets in jovian-like orbits. Here, we present a spectrum with numerous, well-resolved molecular lines from both water and carbon monoxide from a massive planet orbiting less than 40 astronomical units from the star HR 8799. These data reveal the planet's chemical composition, atmospheric structure, and surface gravity, confirming that it is indeed a young planet. The spectral lines suggest an atmospheric carbon-to-oxygen ratio that is greater than that of the host star, providing hints about the planet's formation.


Assuntos
Monóxido de Carbono , Evolução Planetária , Planetas , Água , Atmosfera , Meio Ambiente Extraterreno , Gravitação , Análise Espectral
3.
Appl Opt ; 47(9): 1317-26, 2008 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-18709080

RESUMO

A 32 x 32 microelectricalmechanical systems mirror is controlled in a closed-loop adaptive optics test bed with a spatially filtered wavefront sensor (WFS), Fourier transform wavefront reconstruction, and calibration of references with a high-precision interferometer. When correcting the inherent aberration of the mirror, 0.7 nm rms phase error in the controllable band is achieved. When correcting an etched phase plate with atmospheric statistics, a dark hole 10(3) deeper than the uncontrollable phase is produced in the phase power spectral density. Compensation of the mirror's influence function is done with a Fourier filter, which results in improved loop convergence. Use of the spatial filter is shown to reduce the gain variability of the WFS in a quadcell configuration.

4.
J Opt Soc Am A Opt Image Sci Vis ; 24(9): 2645-60, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17767234

RESUMO

Predictive Fourier control is a temporal power spectral density-based adaptive method for adaptive optics that predicts the atmosphere under the assumption of frozen flow. The predictive controller is based on Kalman filtering and a Fourier decomposition of atmospheric turbulence using the Fourier transform reconstructor. It provides a stable way to compensate for arbitrary numbers of atmospheric layers. For each Fourier mode, efficient and accurate algorithms estimate the necessary atmospheric parameters from closed-loop telemetry and determine the predictive filter, adjusting as conditions change. This prediction improves atmospheric rejection, leading to significant improvements in system performance. For a 48x48 actuator system operating at 2 kHz, five-layer prediction for all modes is achievable in under 2x10(9) floating-point operations/s.

5.
Opt Lett ; 31(5): 565-7, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16570399

RESUMO

Received October 11, 2005; accepted November 10, 2005; posted December 2, 2005 (Doc. ID 65234) We have measured a contrast of 6.5 x 10(-8) from 10 to 25 lambda/D in visible light on the Extreme Adaptive Optics testbed, using a shaped pupil for diffraction suppression. The testbed was designed with a minimal number of high-quality optics to ensure low wavefront error and uses a phase-shifting diffraction interferometer for metrology. This level of contrast is within the regime needed for imaging young Jupiter-like planets, a primary application of high-contrast imaging. We have concluded that wavefront error, not pupil quality, is the limiting error source for improved contrast in our system.

6.
Opt Lett ; 31(3): 293-5, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16480186

RESUMO

A 32 x 32 microelectromechanical systems deformable mirror is controlled in closed loop with a spatially filtered Shack-Hartmann wavefront sensor and a Fourier-transform wavefront reconstruction algorithm. A phase plate based on atmospheric turbulence statistics is used to generate a 1 microm peak-valley static phase aberration. Far-field images and direct phase measurements of the residual are used to compare performance with and without the spatial filter. Use of the spatial filter reduces error in the controllable band from 20 to 6 nm rms. Residual phase power is reduced by more than a factor of 5 for all spatial frequencies up to 0.85 x 1/2d, with a maximum attenuation factor of 37.

7.
Opt Express ; 14(17): 7499-514, 2006 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19529117

RESUMO

High-contrast imaging with adaptive optics (AO) for planet detection requires a sophisticated AO control system to provide the best possible performance. We evaluate the performance improvements in terms of residual error and point-spread function intensity provided by optimal Fourier control using detailed end-to-end simulation. Intensity, however, is not the final measure of system performance. We explore image contrast through analysis and simulation results, showing that speckles caused by atmospheric errors behave very differently in a temporal fashion from speckles caused by wavefront sensor noise errors.

8.
Appl Opt ; 43(29): 5458-67, 2004 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-15508602

RESUMO

The adaptive-optics (AO) system at the W. M. Keck Observatory is characterized. We calculate the error budget of the Keck AO system operating in natural guide star mode with a near-infrared imaging camera. The measurement noise and bandwidth errors are obtained by modeling the control loops and recording residual centroids. Results of sky performance tests are presented: The AO system is shown to deliver images with average Strehl ratios of as much as 0.37 at 1.58 microm when a bright guide star is used and of 0.19 for a magnitude 12 star. The images are consistent with the predicted wave-front error based on our error budget estimates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...