Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(27): 18504-18512, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38946087

RESUMO

Noncentrosymmetric nanostructures are an attractive synthetic target as they can exhibit complex interparticle interactions useful for numerous applications. However, generating uniform, colloidally stable, noncentrosymmetric nanoparticles with low aspect ratios is a significant challenge using solution self-assembly approaches. Herein, we outline the synthesis of noncentrosymmetric multiblock co-nanofibers by subsequent living crystallization-driven self-assembly of block co-polymers, spatially confined attachment of nanoparticles, and localized nanofiber fragmentation. Using this strategy, we have fabricated uniform diblock and triblock noncentrosymmetric π-conjugated nanofiber-nanoparticle hybrid structures. Additionally, in contrast to Brownian motion typical of centrosymmetric nanoparticles, we demonstrated that these noncentrosymmetric nanofibers undergo ballistic motion in the presence of H2O2 and thus could be employed as nanomotors in various applications, including drug delivery and environmental remediation.

2.
J Am Chem Soc ; 145(41): 22539-22547, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37788384

RESUMO

The creation of artificial high-performance photosynthetic assemblies with a tailorable antenna system to deliver absorbed solar energy to a photosynthetic reaction center, thereby mimicking biological photosynthesis, remains a major challenge. We report the construction of recyclable, high-performance photosynthetic nanofibers with a crystalline π-conjugated polyfluorene core as an antenna system that funnels absorbed solar energy to spatially defined sensitized Co(II) porphyrin photocatalysts for the hydrogen evolution reaction. Highly effective energy funneling was achieved by tuning the dimensions of the nanofibers to exploit the very long exciton diffusion lengths (>200 nm) associated with the highly crystalline polyfluorene core formed using the living crystallization-driven self-assembly seeded growth method. This enabled efficient solar light-driven hydrogen production from water with a turnover number of over 450 for 8 h of irradiation, an H2 production rate of ca. 65 mmol h-1 g-1, and an overall quantum yield of 0.4% in the wavelength region (<405 nm) beyond the absorption of the molecular photocatalyst. The strategy of using a tailored antenna system based on π-conjugated polymers and maximizing exciton transport to a reaction center reported in this work opens up future opportunities for potential applications in other fields such as solar overall water splitting, CO2 reduction, and photocatalytic small molecule synthesis.

3.
J Am Chem Soc ; 142(23): 10319-10324, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32434319

RESUMO

A polymeric phosphine sensor is reported that exhibits bright blue fluorescence in the presence of gold(I/III) ions but is nonemissive with other metal ions. Specifically, solutions of a poly(p-arylenediethynylene phosphine) copolymer are 35 or 94 times more emissive when treated with solutions of (tht)AuCl or HAuCl4·3H2O, respectively. Model compound studies confirm phosphine coordination to metals, including gold(I/III) and rhodium(I), and the selective "turn-on" fluorescence was investigated using time-dependent density functional theory calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...