Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 32(7): e2679, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35588285

RESUMO

For many avian species, spatial migration patterns remain largely undescribed, especially across hemispheric extents. Recent advancements in tracking technologies and high-resolution species distribution models (i.e., eBird Status and Trends products) provide new insights into migratory bird movements and offer a promising opportunity for integrating independent data sources to describe avian migration. Here, we present a three-stage modeling framework for estimating spatial patterns of avian migration. First, we integrate tracking and band re-encounter data to quantify migratory connectivity, defined as the relative proportions of individuals migrating between breeding and nonbreeding regions. Next, we use estimated connectivity proportions along with eBird occurrence probabilities to produce probabilistic least-cost path (LCP) indices. In a final step, we use generalized additive mixed models (GAMMs) both to evaluate the ability of LCP indices to accurately predict (i.e., as a covariate) observed locations derived from tracking and band re-encounter data sets versus pseudo-absence locations during migratory periods and to create a fully integrated (i.e., eBird occurrence, LCP, and tracking/band re-encounter data) spatial prediction index for mapping species-specific seasonal migrations. To illustrate this approach, we apply this framework to describe seasonal migrations of 12 bird species across the Western Hemisphere during pre- and postbreeding migratory periods (i.e., spring and fall, respectively). We found that including LCP indices with eBird occurrence in GAMMs generally improved the ability to accurately predict observed migratory locations compared to models with eBird occurrence alone. Using three performance metrics, the eBird + LCP model demonstrated equivalent or superior fit relative to the eBird-only model for 22 of 24 species-season GAMMs. In particular, the integrated index filled in spatial gaps for species with over-water movements and those that migrated over land where there were few eBird sightings and, thus, low predictive ability of eBird occurrence probabilities (e.g., Amazonian rainforest in South America). This methodology of combining individual-based seasonal movement data with temporally dynamic species distribution models provides a comprehensive approach to integrating multiple data types to describe broad-scale spatial patterns of animal movement. Further development and customization of this approach will continue to advance knowledge about the full annual cycle and conservation of migratory birds.


Assuntos
Migração Animal , Aves , Animais , Estações do Ano , América do Sul
2.
Ecol Evol ; 9(15): 8840-8855, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31410284

RESUMO

Migratory behaviors such as the timing and duration of migration are genetically inherited and can be under strong natural selection, yet we still know very little about the specific genes or molecular pathways that control these behaviors. Studies in candidate genes Clock and Adcyap1 have revealed that both of these loci can be significantly correlated with migratory behaviors in birds, though observed relationships appear to vary across species. We investigated geographic genetic structure of Clock and Adcyap1 in four populations of blackpoll warblers (Setophaga striata), a Neotropical-Nearctic migrant that exhibits geographic variation in migratory timing and duration across its boreal breeding distribution. Further, we used data on migratory timing and duration, obtained from light-level geolocator trackers to investigate candidate genotype-phenotype relationships at the individual level. While we found no geographic structure in either candidate gene, we did find evidence that candidate gene lengths are correlated with five of the six migratory traits. Maximum Clock allele length was significantly and negatively associated with spring arrival date. Minimum Adcyap1 allele length was significantly and negatively associated with spring departure date and positively associated with fall arrival date at the wintering grounds. Additionally, we found a significant interaction between Clock and Adcyap1 allele lengths on both spring and fall migratory duration. Adcyap1 heterozygotes also had significantly shorter migration duration in both spring and fall compared to homozygotes. Our results support the growing body of evidence that Clock and Adcyap1 allele lengths are correlated with migratory behaviors in birds.

4.
Sci Rep ; 7(1): 3405, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28611372

RESUMO

Long-distance migratory organisms are under strong selection to migrate quickly. Stopovers demand more time than flying and are used by individuals to refuel during migration, but the effect of fuel loads (fat) acquired at stopover sites on the subsequent pace of migration has not been quantified. We studied stopover behaviour of Grey-cheeked Thrush (Catharus minimus) at a site in northern Colombia and then tracked their migration using an intercontinental radio-telemetry array. Tracking confirmed long-distance flights of more than 3000 km, highlighting the key importance of a single stopover site to the migration strategy of this species. Our results suggest that these songbirds behave as time-minimizers as predicted by optimal migration theory, and that fuel loads acquired at this South American stopover site, together with departure date, carry-over to influence the pace of migration, contributing to differences in travel time of up to 30 days in birds subsequently detected in the U. S. and Canada. Such variation in the pace of migration arising from a single stopover site, likely has important fitness consequences and suggests that identifying important fuelling sites will be essential to effectively conserve migratory species.


Assuntos
Migração Animal/fisiologia , Comportamento Animal/fisiologia , Comportamento Alimentar , Aves Canoras/fisiologia , Telemetria/métodos , Animais , Modelos Biológicos , Fatores de Tempo
5.
Mov Ecol ; 4: 24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27833750

RESUMO

Most songbird migrants travel between their breeding areas and wintering grounds by a series of nocturnal flights. The exact nocturnal departure time for these flights varies considerably between individuals even of the same species. Although the basic circannual and circadian rhythms of songbirds, their adaptation to migration, and the factors influencing the birds' day-to-day departure decision are reasonably well studied, we do not understand how birds time their departures within the night. These decisions are crucial, because the nocturnal departure time defines the potential flight duration of the migratory night. The distances covered during the nocturnal migratory flights in the course of migration in turn directly affect the overall speed of migration. To understand the factors influencing the arrival of the birds in the breeding/wintering areas, we need to investigate the mechanisms that control nocturnal departure time. Here, we provide the first conceptual framework for explaining the variation commonly observed in this migratory trait. The basic schedule of nocturnal departure is likely regulated by both the circannual and circadian rhythms of the innate migration program. We postulate that the endogenously controlled schedule of nocturnal departures is modified by intrinsic and extrinsic factors. So far there is only correlative evidence that birds with a high fuel load or a considerable increase in fuel load and significant wind (flow) assistance towards their migratory goal depart early within the night. In contrast, birds migrating with little fuel and under unfavorable wind conditions show high variation in their nocturnal departure time. The latter may contain an unknown proportion of nocturnal movements not directly related to migratory flights. Excluding such movements is crucial to clearly identify the main drivers of the variation in nocturnal departure time. In general we assume that the observed variation in the nocturnal departure time is explained by individually different reactions norms of the innate migration program to both intrinsic and extrinsic factors.

6.
Biol Lett ; 11(4): 20141045, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25832815

RESUMO

Many fundamental aspects of migration remain a mystery, largely due to our inability to follow small animals over vast spatial areas. For more than 50 years, it has been hypothesized that, during autumn migration, blackpoll warblers (Setophaga striata) depart northeastern North America and undertake a non-stop flight over the Atlantic Ocean to either the Greater Antilles or the northeastern coast of South America. Using miniaturized light-level geolocators, we provide the first irrefutable evidence that the blackpoll warbler, a 12 g boreal forest songbird, completes an autumn transoceanic migration ranging from 2270 to 2770 km (mean ± s.d.: 2540 ± 257) and requiring up to 3 days (62 h ± 10) of non-stop flight. This is one of the longest non-stop overwater flights recorded for a songbird and confirms what has long been believed to be one of the most extraordinary migratory feats on the planet.


Assuntos
Migração Animal/fisiologia , Voo Animal , Aves Canoras/fisiologia , Animais , Oceano Atlântico , Peso Corporal , Estações do Ano , Aves Canoras/anatomia & histologia
7.
J Anim Ecol ; 81(2): 377-85, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21954938

RESUMO

1. Some bat species make long-distance latitudinal migrations between summer and winter grounds, but because of their elusive nature, few aspects of their biology are well understood. The need for migratory stopover sites to rest and refuel, such as used by birds, has been repeatedly suggested, but not previously tested empirically in bats. 2. We studied migrating silver-haired bats (Lasionycteris noctivagans) at Long Point, ON, Canada. We used digital radio-transmitters to track 30 bats using an array of five towers that effectively covered the entire region (c. 20 × 40 km). We measured stopover duration and departure direction, and documented movement patterns, foraging activity and roost sites. We measured body composition on arrival using quantitative magnetic resonance and simulated long-distance migration using observed body composition to predict migration range and rate. 3. Migration occurred in two waves (late August and mid-September). Most bats stayed 1-2 days, although two remained >2 weeks. One third of the bats foraged while at the site, many foraging opportunistically on nights when rain precluded continued migration. Bats roosted in a variety of tree species and manmade structures in natural and developed areas. Half of the bats departed across Lake Erie (minimum crossing distance c. 38 km) while half departed along the shoreline. 4. Simulations predicted a migration rate of c. 250-275 km per day and suggest that all but one of the bats in our study carried sufficient fuel stores to reach the putative wintering area (estimated distance 1500 km) without further refuelling. 5. Our results suggest that migrating bats stopover for sanctuary or short-term rest as opposed to extended rest and refuelling as in many songbirds. Daily torpor could reduce energy costs when not in flight, minimizing the need for extended stopovers and allowing bats to potentially complete their migration at a fraction of the time and energy cost of similar sized birds.


Assuntos
Migração Animal , Quirópteros/fisiologia , Comportamento Alimentar , Animais , Composição Corporal , Feminino , Voo Animal , Masculino , Movimento , Ontário , Estações do Ano , Telemetria , Fatores de Tempo
8.
Oecologia ; 168(3): 849-61, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21927912

RESUMO

For seasonally migrating birds, aspects of migratory behavior, such as the use of temperate versus tropical wintering areas, may influence their ability to respond to environmental change. Here, we infer potential flexibility in songbird migration from variation in two alternative stopover behaviors. Hierarchical Bayesian mark-recapture modeling was used to quantify stopover decisions over 19 years for four temperate and four tropical migratory species at a stopover site in southern Canada. Short-distance temperate migrants exhibited higher variability in behavior and greater responses to local weather than longer-distance tropical migrants, as measured by transience (the proportion of birds stopping <24 h, i.e. seeking brief sanctuary or subsequently relocating) and departure (re-initiation of migration by birds that stopped over for >24 h). In contrast to many previous works on climate-migration associations, annual variation in stopover behavior did not show strong links to broad-scale climatic fluctuations for either temperate or tropical migrants, nor was there any indication of directional changes in stopover behavior over the past two decades. In addition to suggesting that migratory songbirds-particularly tropical-wintering species-may face increasing threats with future climatic variability, our study highlights the potential importance of flexibility in en-route behavior for resilience to environmental change.


Assuntos
Migração Animal , Mudança Climática , Aves Canoras/fisiologia , Adaptação Fisiológica , Animais , Teorema de Bayes , Densidade Demográfica , Dinâmica Populacional
9.
PLoS One ; 6(11): e27054, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22073253

RESUMO

Many species of birds and bats undertake seasonal migrations between breeding and over-wintering sites. En-route, migrants alternate periods of flight with time spent at stopover--the time and space where individuals rest and refuel for subsequent flights. We assessed the spatial scale of movements made by migrants during stopover by using an array of automated telemetry receivers with multiple antennae to track the daily location of individuals over a geographic area ~20 × 40 km. We tracked the movements of 322 individuals of seven migratory vertebrate species (5 passerines, 1 owl and 1 bat) during spring and fall migratory stopover on and adjacent to a large lake peninsula. Our results show that many individuals leaving their capture site relocate within the same landscape at some point during stopover, moving as much as 30 km distant from their site of initial capture. We show that many apparent nocturnal departures from stopover sites are not a resumption of migration in the strictest sense, but are instead relocations that represent continued stopover at a broader spatial scale.


Assuntos
Migração Animal , Aves/fisiologia , Quirópteros/fisiologia , Animais
10.
Proc Biol Sci ; 276(1654): 55-61, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-18765340

RESUMO

Despite their status as the most speciose group of terrestrial vertebrates, birds exhibit the smallest and least variable genome sizes among tetrapods. It has been suggested that this is because powered flight imposes metabolic constraints on cell size, and thus on genome size. This notion has been supported by analyses of genome size and cell size versus resting metabolic rate and other parameters across birds, but most previous studies suffer from one or more limitations that have left the question open. The present study provides new insights into this issue through an examination of newly measured genome sizes, nucleus and cell sizes, body masses and wing parameters for 74 species of birds in the order Passeriformes. A positive relationship was found between genome size and nucleus/cell size, as well as between genome size and wing loading index, which is interpreted as an indicator of adaptations for efficient flight. This represents the single largest dataset presented for birds to date, and is the first to analyse a distinctly flight-related parameter along with genome size using phylogenetic comparative analyses. The results lend additional support to the hypothesis that the small genomes of birds are indeed related in some manner to flight, though the mechanistic and historical bases for this association remain an interesting area of investigation.


Assuntos
Genoma , Passeriformes/genética , Asas de Animais/anatomia & histologia , Animais , Tamanho do Núcleo Celular , Tamanho Celular , Eritrócitos/citologia , Eritrócitos/ultraestrutura , Passeriformes/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...