Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 47(11): 101-7, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12906277

RESUMO

Return side streams from anaerobic digesters and dewatering facilities at wastewater treatment plants (WWTPs) contribute a significant proportion of the total nitrogen load on a mainstream process. Similarly, significant phosphate loads are also recirculated in biological nutrient removal (BNR) wastewater treatment plants. Ion exchange using a new material, known by the name MesoLite, shows strong potential for the removal of ammonia from these side streams and an opportunity to concurrently reduce phosphate levels. A pilot plant was designed and operated for several months on an ammonia rich centrate from a dewatering centrifuge at the Oxley Creek WWTP, Brisbane, Australia. The system operated with a detention time in the order of one hour and was operated for between 12 and 24 hours prior to regeneration with a sodium rich solution. The same pilot plant was used to demonstrate removal of phosphate from an abattoir wastewater stream at similar flow rates. Using MesoLite materials, >90% reduction of ammonia was achieved in the centrate side stream. A full-scale process would reduce the total nitrogen load at the Oxley Creek WWTP by at least 18%. This reduction in nitrogen load consequently improves the TKN/COD ratio of the influent and enhances the nitrogen removal performance of the biological nutrient removal process.


Assuntos
Nitrogênio/isolamento & purificação , Fósforo/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Silicatos de Alumínio/química , Amônia/metabolismo , Bactérias Anaeróbias , Reatores Biológicos , Troca Iônica , Nitrogênio/metabolismo , Fósforo/metabolismo , Esgotos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...