Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(11): e0277765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36395119

RESUMO

INTRODUCTION: Contusion injuries are common in sport, but our knowledge of the responses to injury primarily come from animal studies and research using eccentric exercise. Therefore, the aim of this study was to develop a model of contusion injury in human participants and, additionally, investigate and compare physiological responses to four impact loads. METHODS: Thirty-two males were exposed to a single impact of either 4.2, 5.2, 6.2 or 7.2kg, dropped from 67 cm, on to the vastus lateralis of one leg. Maximum voluntary and electrically induced quadriceps force, and pressure pain threshold were measured, and blood sampling carried out, prior to and 30min, 24, 48 and 72h post-impact. Magnetic resonance imaging was carried out 24h post-impact to quantify oedema. RESULTS: Despite impact force with 7.2kg (1681.4 ± 235.6 N) not being different to 6.2kg (1690.7 ± 117.6 N), 7.2kg resulted in greater volume of oedema, voluntary force loss, pain and elevations in creatine kinase than the other loads. Although electrically induced force changed over time, post-hoc analysis failed to identify any changes. Interleukin-6 and prostaglandin-E2 did not change over time for any of the loads. Significant correlations were found between oedema volume, pressure pain threshold and maximum voluntary contraction force. CONCLUSIONS: This is the first experimental study to investigate traumatic loading of skeletal muscle and the subsequent physiological responses associated with contusion injuries in humans. The absence of immediate elevations in creatine kinase and changes in electrically induced force suggest impact, with forces similar to those experienced in contact sport, does not cause significant, direct damage to skeletal muscle. However, the relationship between oedema volume, changes in pressure pain threshold and maximum voluntary contraction force suggests central inhibition plays a role in contusion-related muscle dysfunction.


Assuntos
Contusões , Masculino , Animais , Humanos , Músculo Esquelético/fisiologia , Músculo Quadríceps , Creatina Quinase , Dor , Modelos Teóricos
2.
J Diabetes Sci Technol ; 12(5): 1016-1023, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29845873

RESUMO

BACKGROUND: MARD (mean absolute relative difference) is increasingly used to describe performance of glucose monitoring systems, providing a single-value quantitative measure of accuracy and allowing comparisons between different monitoring systems. This study reports MARDs for the OneTouch Verio® glucose meter clinical data set of 80 258 data points (671 individual batches) gathered as part of a 7.5-year self-surveillance program Methods: Test strips were routinely sampled from randomly selected manufacturer's production batches and sent to one of 3 clinic sites for clinical accuracy assessment using fresh capillary blood from patients with diabetes, using both the meter system and standard laboratory reference instrument. RESULTS: Evaluation of the distribution of strip batch MARD yielded a mean value of 5.05% (range: 3.68-6.43% at ±1.96 standard deviations from mean). The overall MARD for all clinic data points (N = 80 258) was also 5.05%, while a mean bias of 1.28 was recorded. MARD by glucose level was found to be consistent, yielding a maximum value of 4.81% at higher glucose (≥100 mg/dL) and a mean absolute difference (MAD) of 5.60 mg/dL at low glucose (<100 mg/dL). MARD by year of manufacture varied from 4.67-5.42% indicating consistent accuracy performance over the surveillance period. CONCLUSIONS: This 7.5-year surveillance program showed that this meter system exhibits consistently low MARD by batch, glucose level and year, indicating close agreement with established reference methods whilste exhibiting lower MARD values than continuous glucose monitoring (CGM) systems and providing users with confidence in the performance when transitioning to each new strip batch.


Assuntos
Automonitorização da Glicemia/normas , Glicemia/análise , Vigilância de Produtos Comercializados , Fitas Reagentes/normas , Humanos
3.
J Diabetes Sci Technol ; 11(6): 1155-1162, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28406040

RESUMO

BACKGROUND: A key approach in enabling people with diabetes to better manage their condition is through self-monitoring of blood glucose (SMBG). Any functional SMBG system should demonstrate clinical accuracy across a broad glucose range and be insensitive to hematocrit. Furthermore, it should be incumbent on the manufacturer to demonstrate that their product continues to meet clinical accuracy claims during product lifetime. METHODS: Test strips from a globally distributed SMBG product were sampled from randomly selected production batches as part of the manufacturer's routine product evaluation process. Clinical accuracy was assessed within diabetes patients at 3 clinic sites against a standard reference method and evaluated against system accuracy in accordance with the ISO 15197:2015 standard (unchanged from ISO 15197:2013 in terms of performance specifications). Data were collected over 7 years (2010-2016) and comprised 73,600 individual glucose results. Overall clinic performance was assessed, as was accuracy at low and high glucose levels and extremes of hematocrit. RESULTS: Across the 7-year surveillance period, overall test strip clinical accuracy was 97.8% versus the 95% ISO-defined minimum criterion with by-year values of 97.0-98.6%. Accuracy at the lowest (≤50 mg/dL) and highest (>400 mg/dL) ranges of glucose was 97.0% and 98.3% respectively. Within these low/high blood glucose subpopulations, accuracy at the lower and upper first percentile hematocrit ranges, was 98.9%, and 97.1% respectively. CONCLUSIONS: This 7-year surveillance program showed the test strips to have excellent clinical accuracy at the outer ranges of subject blood glucose and hematocrit, based on assessment against the ISO 15197:2015 clinical accuracy criterion.


Assuntos
Automonitorização da Glicemia/instrumentação , Glicemia/metabolismo , Diabetes Mellitus/diagnóstico , Fitas Reagentes , Biomarcadores/sangue , Automonitorização da Glicemia/normas , Diabetes Mellitus/sangue , Diabetes Mellitus/terapia , Hematócrito , Humanos , Valor Preditivo dos Testes , Vigilância de Produtos Comercializados , Reprodutibilidade dos Testes , Fatores de Tempo , Reino Unido
4.
JRSM Open ; 8(2): 2054270416681746, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28203384

RESUMO

OBJECTIVES: We investigated popliteal venous haemodynamics of the VenaJet Jet Impulse Technology system within a below-knee fibreglass cast. DESIGN: Randomized controlled trial. PARTICIPANTS: Twenty-four healthy participants aged 18-54 had both feet placed within the Jet Impulse Technology system and were randomised for one or other leg to be within a below-knee fibreglass cast. SETTING: Pacific Radiology, Lower Hutt, Wellington. MAIN OUTCOME MEASURES: The primary outcome variable was peak systolic velocity (cm/s) compared between legs with and without the cast at 60 min (after 10 min Jet Impulse Technology activation), using a mixed linear model and a non-inferiority bound of 4.8 cm/s. Secondary outcome variables were the difference in peak systolic velocity between the casted limb and the non-casted limb at baseline and 40 min after casting, and the difference in mean flow velocity (cm/s), vein diameter (mm), and total volume flow (L/min) between the casted limb and the non-casted limb at baseline, 40 and 60 min. RESULTS: The mean (standard deviation) peak systolic velocity was 4.6(1.5), 4.8(1.1), 28.8(16.1), and 4.3(1.2), 4.8(1.4) and 29.3(19.0) cm/s at baseline, 40 and 60 min in the casted and non-casted leg, respectively. The difference (95% confidence interval) between cast and no-cast at 60 min was -0.8 (-6.5 to 4.9) cm/s, P = 0.78. The peak systolic velocity, flow velocity and total volume flow at 40 min were not statistically significantly different from baseline for both casted and non-casted limb. CONCLUSION: In healthy volunteers, the popliteal venous haemodynamics of the Jet Impulse Technology system was similar between the legs with and without a below-knee fibreglass cast. In-cast Jet Impulse Technology may provide a non-pharmacological option for venous thromboembolism prophylaxis for lower-limb cast-immobility.

5.
Int J Vasc Med ; 2013: 948769, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24319596

RESUMO

Background. A novel, micromobile foot compression device (MMC) has been developed to reduce the risk of venous thromboembolism associated with prolonged seated immobility. Objective. To compare the efficacy of the MMC with graduated compression stockings in augmenting lower limb venous blood flow. Patients/Methods. Twenty participants were randomised to wear the MMC or a graduated compression stocking (GCS) on either the left or right leg while seated. Doppler ultrasound measurements of popliteal vein blood flow and leg circumference measurements were made -30 and -10 minutes (baseline) and +30 and +60 minutes following application of the interventions. The primary outcome variable was peak systolic velocity. A mixed linear model was used, with covariates including baseline measurement, randomised side, time, and a time by interaction term. Results. The mean popliteal vein peak systolic velocity at 60 minutes with the MMC was 20.1 cm/s which was significantly higher than with the GCS (difference 14.1 cm/s 95% CI 12.1-16.2), representing a 3.8-fold increase from baseline. Conclusion. The MMC resulted in a marked increase in lower limb venous blood flow which suggests that it may have efficacy in reducing the risk of venous thromboembolism associated with prolonged seated immobility, such as long distance air travel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...