Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(11): 9919-9937, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37204291

RESUMO

To understand how the molecular machinery of synapses works, it is essential to determine an inventory of synaptic proteins at a subsynaptic resolution. Nevertheless, synaptic proteins are difficult to localize because of the low expression levels and limited access to immunostaining epitopes. Here, we report on the exTEM (epitope-exposed by expansion-transmission electron microscopy) method that enables the imaging of synaptic proteins in situ. This method combines TEM with nanoscale resolution and expandable tissue-hydrogel hybrids for enhanced immunolabeling with better epitope accessibility via molecular decrowding, allowing successful probing of the distribution of various synapse-organizing proteins. We propose that exTEM can be employed for studying the mechanisms underlying the regulation of synaptic architecture and function by providing nanoscale molecular distribution of synaptic proteins in situ. We also envision that exTEM is widely applicable for investigating protein nanostructures located in densely packed environments by immunostaining of commercially available antibodies at nanometer resolution.


Assuntos
Sinapses , Expansão de Tecido , Sinapses/fisiologia
2.
Adv Sci (Weinh) ; 10(16): e2206939, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37026425

RESUMO

Spatial transcriptomics is a newly emerging field that enables high-throughput investigation of the spatial localization of transcripts and related analyses in various applications for biological systems. By transitioning from conventional biological studies to "in situ" biology, spatial transcriptomics can provide transcriptome-scale spatial information. Currently, the ability to simultaneously characterize gene expression profiles of cells and relevant cellular environment is a paradigm shift for biological studies. In this review, recent progress in spatial transcriptomics and its applications in neuroscience and cancer studies are highlighted. Technical aspects of existing technologies and future directions of new developments (as of March 2023), computational analysis of spatial transcriptome data, application notes in neuroscience and cancer studies, and discussions regarding future directions of spatial multi-omics and their expanding roles in biomedical applications are emphasized.


Assuntos
Neoplasias , Transcriptoma , Transcriptoma/genética , Perfilação da Expressão Gênica , Neoplasias/genética , Neoplasias/terapia
3.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36232454

RESUMO

Functional recovery following traumatic brain injury (TBI) is limited due to progressive neuronal damage resulting from secondary injury-associated neuroinflammation. Steroidal anti-inflammatory drugs, such as dexamethasone (DX), can reduce neuroinflammation by activated microglia and infiltrated macrophages. In our previous work, we developed hydrolytically degradable poly(ethylene) glycol-bis-(acryloyloxy acetate) (PEG-bis-AA) hydrogels with dexamethasone (DX)-conjugated hyaluronic acid (HA-DXM) and demonstrated that dexamethasone-loaded hydrogels (PEG-bis-AA/HA-DXM) can reduce neuroinflammation, apoptosis, and lesion volume and improve neuronal cell survival and motor function recovery at seven days post-injury (DPI) in a rat mild-TBI model. In this study, we investigate the effects of the local application of PEG-bis-AA/HA-DXM hydrogels on motor function recovery at 7 DPI and cognitive functional recovery as well as secondary injury at 14 DPI in a rat mild-CCI TBI model. We observed that PEG-bis-AA/HA-DXM-treated animals exhibit significantly improved motor functions by the rotarod test and cognitive functions by the Morris water maze test compared to untreated TBI animals. We also observed that PEG-bis-AA/HA-DXM hydrogels reduce the inflammatory response, apoptosis, and lesion volume compared to untreated animals at 14 DPI. Therefore, PEG-bis-AA/HA-DXM hydrogels can be promising a therapeutic intervention for TBI treatment.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Materiais Biocompatíveis , Concussão Encefálica/complicações , Lesões Encefálicas Traumáticas/patologia , Cognição , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Etilenos , Ácido Hialurônico , Hidrogéis , Polietilenoglicóis , Ratos
4.
Nanomedicine (Lond) ; 17(7): 431-445, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35184609

RESUMO

Aim: To develop poly(lactide-co-glycolide)-graft-polyethylenimine (PgP) as a nanocarrier for the delivery of rolipram (Rm) and evaluate the therapeutic efficacy of Rm-loaded PgP (Rm-PgP) on secondary injury and motor function in a rat traumatic brain injury (TBI) model. Materials & methods: Rm-PgP was injected in the injured brain lesion immediately after TBI using a microinjection pump. Secondary injury pathologies such as inflammatory response, apoptosis and astrogliosis were assessed by histological analysis and functional recovery was assessed by assorted motor function tests. Results: Rm-PgP restored cyclic adenosine monophosphate level in the injured brain close to the sham level and Rm-PgP treatment reduced lesion volume, neuroinflammation and apoptosis and improved motor function at 7 days post-TBI. Conclusion: One single injection of Rm-PgP can be effective for acute mild TBI treatment.


Assuntos
Lesões Encefálicas Traumáticas , Animais , Apoptose , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Polietilenoimina/farmacologia , Ratos , Recuperação de Função Fisiológica , Rolipram/farmacologia
5.
Nanomedicine ; 32: 102343, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33259960

RESUMO

Traumatic brain injury (TBI) is a leading cause of death and disability with complex pathophysiology including prolonged neuroinflammation, apoptosis, and glial scar formation. The upregulation of RhoA is a key factor in the pathological development of secondary injury following TBI. Previously, we developed a novel cationic, amphiphilic copolymer, poly (lactide-co-glycolide)-graft-polyethylenimine (PgP), as a nanocarrier for delivery of therapeutic nucleic acids. In a rat compression spinal cord injury model, delivery of siRNA targeting RhoA (siRhoA) by PgP resulted in RhoA knockdown; reduced astrogliosis and inflammation; and promoted axonal regeneration/sparing. Here, we evaluated the effect of RhoA knockdown by PgP/siRhoA nanoplexes in a rat controlled cortical impact TBI model. A single intraparenchymal injection of PgP/siRhoA nanoplexes significantly reduced RhoA expression, lesion volume, neuroinflammation, and apoptosis, and increased neuronal survival in the ipsilateral cortex. These results suggest that PgP/siRhoA nanoplexes can efficiently knockdown RhoA expression in the injured brain and reduce secondary injury.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Inflamação/patologia , Nanopartículas/química , Neurônios/patologia , Polietilenoimina/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , RNA Interferente Pequeno/administração & dosagem , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Apoptose , Astrócitos/patologia , Sobrevivência Celular , Modelos Animais de Doenças , Gliose/patologia , Ratos Sprague-Dawley
6.
Biomed Mater ; 16(3)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33152711

RESUMO

Excessive and prolonged neuroinflammation leads to neuronal cell death and limits functional recovery after traumatic brain injury (TBI). Dexamethasone (DX) is a steroidal anti-inflammatory agent that is known to attenuate early expression of pro-inflammatory cytokines associated with activated microglia/macrophages. In this study, we investigated the effect of dexamethasone-conjugated hyaluronic acid (HA-DXM) incorporated in a hydrolytically degradable, photo-cross-linkable poly (ethylene) glycol-bis-(acryloyloxy acetate) (PEG-bis-AA) hydrogel on the inflammatory response, apoptosis, and functional recovery in a controlled cortical impact (CCI) rat TBI model.In vitro, DX release from PEG-bis-AA/HA-DXM hydrogel was slow in phosphate-buffered saline without enzymes, but significantly increased in the presence of hyauronidase/esterase enzymes. TBI was generated by a CCI device armed with a 3 mm tip (3.5 m s-1, depth: 2 mm) and treated immediately with PEG-bis-AA/HA-DXM hydrogel. PEG-bis-AA/HA hydrogel without DX was used for comparison and untreated TBI group was used as a control. Significant reductions in cavity size, inflammatory response, and apoptosis were observed in animals treated with PEG-bis-AA/HA-DXM compared to those receiving PEG-bis-AA/HA and untreated. Animals receiving the PEG-bis-AA/HA-DXM hydrogel also exhibited higher neuronal cell survival and improved motor functional recovery compared to the other two groups.


Assuntos
Anti-Inflamatórios , Dexametasona , Ácido Hialurônico , Hidrogéis/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Lesões Encefálicas Traumáticas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Dexametasona/química , Dexametasona/farmacocinética , Dexametasona/farmacologia , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Ácido Hialurônico/química , Ácido Hialurônico/farmacocinética , Ácido Hialurônico/farmacologia , Masculino , Doenças Neuroinflamatórias/metabolismo , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos
7.
J Neurotrauma ; 35(3): 582-592, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29065765

RESUMO

Among the complex pathophysiological events following spinal cord injury (SCI), one of the most important molecular level consequences is a dramatic reduction in neuronal cyclic adenosine monophosphate (cAMP) levels. Many studies shown that rolipram (Rm), a phosphodiesterase IV inhibitor, can protect against secondary cell death, reduce inflammatory cytokine levels and immune cell infiltration, and increase white matter sparing and functional improvement. Previously, we developed a polymeric micelle nanoparticle, poly(lactide-co-glycolide)-graft-polyethylenimine (PgP), for combinatorial delivery of therapeutic nucleic acids and drugs for SCI repair. In this study, we evaluated PgP as an Rm delivery carrier for SCI repair. Rolipram's water solubility was increased ∼6.8 times in the presence of PgP, indicating drug solubilization in the micelle hydrophobic core. Using hypoxia as an in vitro SCI model, Rm-loaded PgP (Rm-PgP) restored cAMP levels and increased neuronal cell survival of cerebellar granular neurons. The potential efficacy of Rm-PgP was evaluated in a rat compression SCI model. After intraspinal injection, 1,1'-dioctadecyl-3,3,3',3'-tetramethyl indotricarbocyanine Iodide-loaded PgP micelles were retained at the injection site for up to 5 days. Finally, we show that a single injection of Rm-PgP nanoparticles restored cAMP in the SCI lesion site and reduced apoptosis and the inflammatory response. These results suggest that PgP may offer an efficient and translational approach to delivering Rm as a neuroprotectant following SCI.


Assuntos
Fármacos Neuroprotetores/administração & dosagem , Rolipram/administração & dosagem , Traumatismos da Medula Espinal , Regeneração da Medula Espinal/efeitos dos fármacos , Animais , Portadores de Fármacos , Micelas , Nanopartículas , Inibidores da Fosfodiesterase 4/administração & dosagem , Polietilenoimina , Poliglactina 910 , Ratos , Ratos Sprague-Dawley , Compressão da Medula Espinal
8.
Sci Rep ; 7(1): 11247, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900263

RESUMO

Multiple age-related and injury-induced characteristics of the adult central nervous system (CNS) pose barriers to axonal regeneration and functional recovery following injury. In situ gene therapy is a promising approach to address the limited availability of growth-promoting biomolecules at CNS injury sites. The ultimate goal of our work is to develop, a cationic amphiphilic copolymer for simultaneous delivery of drug and therapeutic nucleic acids to promote axonal regeneration and plasticity after spinal cord injury. Previously, we reported the synthesis and characterization of a cationic amphiphilic copolymer, poly (lactide-co-glycolide)-graft-polyethylenimine (PgP) and its ability to efficiently transfect cells with pDNA in the presence of serum. We also demonstrated the efficacy of PgP as a therapeutic siRhoA carrier in a rat compression spinal cord injury model. In this work, we show that PgP/pDNA polyplexes provide improved stability in the presence of competing polyanions and nuclease protection in serum relative to conventional branched polyethylenimine control. PgP/pDNA polyplexes maintain bioactivity for transfection after lyophilization/reconstitution and during storage at 4 °C for up to 5 months, important features for commercial and clinical application. We also demonstrate that PgP/pDNA polyplexes loaded with a hydrophobic fluorescent dye are retained in local neural tissue for up to 5 days and that PgP can efficiently deliver pß-Gal in a rat compression SCI model.


Assuntos
DNA/administração & dosagem , Terapia Genética/métodos , Polietilenoimina/administração & dosagem , Poliglactina 910/administração & dosagem , Traumatismos da Medula Espinal/terapia , Tensoativos/metabolismo , Transfecção/métodos , Animais , Células Cultivadas , DNA/farmacocinética , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacocinética , Plasmídeos/administração & dosagem , Plasmídeos/farmacocinética , Polietilenoimina/farmacocinética , Poliglactina 910/farmacocinética , Ratos
9.
Biomaterials ; 121: 155-166, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28088077

RESUMO

Spinal cord injury (SCI) results in permanent loss of motor and sensory function due to developmentally-related and injured-induced changes in the extrinsic microenvironment and intrinsic neuronal biochemistry that limit plasticity and axonal regeneration. Our long term goal is to develop cationic, amphiphilic copolymers (poly (lactide-co-glycolide)-g-polyethylenimine, PgP) for combinatorial delivery of therapeutic nucleic acids (TNAs) and drugs targeting these different barriers. In this study, we evaluated the ability of PgP to deliver siRNA targeting RhoA, a critical signaling pathway activated by multiple extracellular inhibitors of axonal regeneration. After generation of rat compression SCI model, PgP/siRhoA polyplexes were locally injected into the lesion site. Relative to untreated injury only, PgP/siRhoA polyplexes significantly reduced RhoA mRNA and protein expression for up to 4 weeks post-injury. Histological analysis at 4 weeks post-injury showed that RhoA knockdown was accompanied by reduced apoptosis, cavity size, and astrogliosis and increased axonal regeneration within the lesion site. These studies demonstrate that PgP is an efficient non-viral delivery carrier for therapeutic siRhoA to the injured spinal cord and may be a promising platform for the development of combinatorial TNA/drug therapy.


Assuntos
Axônios/fisiologia , Terapia Genética/métodos , Regeneração Nervosa/fisiologia , RNA Interferente Pequeno/administração & dosagem , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Proteínas rho de Ligação ao GTP/genética , Animais , Axônios/ultraestrutura , Cátions/química , Inativação Gênica , Masculino , Polímeros , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/patologia , Tensoativos/química , Resultado do Tratamento
10.
Acta Biomater ; 35: 98-108, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26873365

RESUMO

Spinal cord injury commonly leads to permanent motor and sensory deficits due to the limited regenerative capacity of the adult central nervous system (CNS). Nucleic acid-based therapy is a promising strategy to deliver bioactive molecules capable of promoting axonal regeneration. Branched polyethylenimine (bPEI: 25kDa) is one of the most widely studied nonviral vectors, but its clinical application has been limited due to its cytotoxicity and low transfection efficiency in the presence of serum proteins. In this study, we synthesized cationic amphiphilic copolymers, poly (lactide-co-glycolide)-graft-polyethylenimine (PgP), by grafting low molecular weight PLGA (4kDa) to bPEI (25kDa) at approximately a 3:1 ratio as an efficient nonviral vector. We show that PgP micelle is capable of efficiently transfecting plasmid DNA (pDNA) and siRNA in the presence of 10% serum in neuroglioma (C6) cells, neuroblastoma (B35) cells, and primary E8 chick forebrain neurons (CFN) with pDNA transfection efficiencies of 58.8%, 75.1%, and 8.1%, respectively. We also show that PgP provides high-level transgene expression in the rat spinal cord in vivo that is substantially greater than that attained with bPEI. The combination of improved transfection and reduced cytotoxicity in vitro in the presence of serum and in vivo transfection of neural cells relative to conventional bPEI suggests that PgP may be a promising nonviral vector for therapeutic nucleic acid delivery for neural regeneration. STATEMENT OF SIGNIFICANCE: Gene therapy is a promising strategy to overcome barriers to axonal regeneration in the injured central nervous system. Branched polyethylenimine (bPEI: 25kDa) is one of the most widely studied nonviral vectors, but its clinical application has been limited due to cytotoxicity and low transfection efficiency in the presence of serum proteins. Here, we report cationic amphiphilic copolymers, poly (lactide-co-glycolide)-graft-polyethylenimine (PgP) that are capable of efficiently transfecting reporter genes and siRNA both in the presence of 10% serum in vitro and in the rat spinal cord in vivo. The combination of improved transfection and reduced cytotoxicity in the presence of serum as well as transfection of neural cells in vivo suggests PgP may be a promising nucleic acid carrier for CNS gene delivery.


Assuntos
Micelas , Ácidos Nucleicos/metabolismo , Polímeros/química , Medula Espinal/metabolismo , Tensoativos/química , Transfecção/métodos , Animais , Cátions , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Galinhas , Ensaio de Desvio de Mobilidade Eletroforética , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/metabolismo , Ácido Láctico/síntese química , Ácido Láctico/química , Masculino , Tamanho da Partícula , Polietilenoimina/síntese química , Polietilenoimina/química , Ácido Poliglicólico/síntese química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , RNA Interferente Pequeno/metabolismo , Ratos Sprague-Dawley , Eletricidade Estática
11.
DNA RNA Nanotechnol ; 3(1): 14-22, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-34970631

RESUMO

Neuronal axons damaged by traumatic injury are unable to spontaneously regenerate in the mammalian adult central nervous system (CNS), causing permanent motor, sensory, and cognitive deficits. Regenerative failure in the adult CNS results from a complex pathology presenting multiple barriers, both the presence of growth inhibitors in the extrinsic microenvironment and intrinsic deficiencies in neuronal biochemistry, to axonal regeneration and functional recovery. There are many strategies for axonal regeneration after CNS injury including antagonism of growth-inhibitory molecules and their receptors, manipulation of cyclic nucleotide levels, and delivery of growth-promoting stimuli through cell transplantation and neurotrophic factor delivery. While all these approaches have achieved varying degrees of improvement in plasticity, regeneration, and function, there is no clinically effective therapy for CNS injury. RNA interference technology offers strategies for improving regeneration by overcoming the aspects of the injured CNS environment that inhibit neurite growth. This occurs through the knockdown of growth-inhibitory molecules and their receptors. In this review, we discuss the current state of RNAi strategies for the treatment of CNS injury based on non-viral vector mediated delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...