Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
bioRxiv ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38854069

RESUMO

Targeted mass spectrometry (MS) methods are powerful tools for selective and sensitive analysis of peptides identified by global discovery experiments. Selected reaction monitoring (SRM) is currently the most widely accepted MS method in the clinic, due to its reliability and analytical performance. However, due to limited throughput and the difficulty in setting up and analyzing large scale assays, SRM and parallel reaction monitoring (PRM) are typically used only for very refined assays of on the order of 100 targets or less. Here we introduce a new MS platform with a quadrupole mass filter, collision cell, linear ion trap architecture that has increased acquisition rates compared to the analogous hardware found in the Orbitrap™ Tribrid™ series instruments. The platform can target more analytes than existing SRM and PRM instruments - in the range of 5000 to 8000 peptides per hour. This capability for high multiplexing is enabled by acquisition rates of 70-100 Hz for peptide applications, and the incorporation of real-time chromatogram alignment that adjusts for retention time drift and enables narrow time scheduled acquisition windows. Finally, we describe a Skyline external software tool that implements the building of targeted methods based on data independent acquisition chromatogram libraries or unscheduled analysis of heavy labeled standards. We show that the platform delivers ~10x lower LOQs than traditional SRM analysis for a highly multiplex assay and also demonstrate how analytical figures of merit change while varying method duration with a constant number of analytes, or by keeping a constant time duration while varying the number of analytes.

2.
bioRxiv ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38895256

RESUMO

The development of targeted assays that monitor biomedically relevant proteins is an important step in bridging discovery experiments to large scale clinical studies. Targeted assays are currently unable to scale to hundreds or thousands of targets. We demonstrate the generation of large-scale assays using a novel hybrid nominal mass instrument. The scale of these assays is achievable with the Stellar™ mass spectrometer through the accommodation of shifting retention times by real-time alignment, while being sensitive and fast enough to handle many concurrent targets. Assays were constructed using precursor information from gas-phase fractionated (GPF) data-independent acquisition (DIA). We demonstrate the ability to schedule methods from an orbitrap and linear ion trap acquired GPF DIA library and compare the quantification of a matrix-matched calibration curve from orbitrap DIA and linear ion trap parallel reaction monitoring (PRM). Two applications of these proposed workflows are shown with a cerebrospinal fluid (CSF) neurodegenerative disease protein PRM assay and with a Mag-Net enriched plasma extracellular vesicle (EV) protein survey PRM assay.

3.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895358

RESUMO

Recent developments in machine-learning (ML) and deep-learning (DL) have immense potential for applications in proteomics, such as generating spectral libraries, improving peptide identification, and optimizing targeted acquisition modes. Although new ML/DL models for various applications and peptide properties are frequently published, the rate at which these models are adopted by the community is slow, which is mostly due to technical challenges. We believe that, for the community to make better use of state-of-the-art models, more attention should be spent on making models easy to use and accessible by the community. To facilitate this, we developed Koina, an open-source containerized, decentralized and online-accessible high-performance prediction service that enables ML/DL model usage in any pipeline. Using the widely used FragPipe computational platform as example, we show how Koina can be easily integrated with existing proteomics software tools and how these integrations improve data analysis.

4.
Anal Chem ; 96(19): 7373-7379, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38696819

RESUMO

Cross-linking mass spectrometry (XL-MS) has evolved into a pivotal technique for probing protein interactions. This study describes the implementation of Parallel Accumulation-Serial Fragmentation (PASEF) on timsTOF instruments, enhancing the detection and analysis of protein interactions by XL-MS. Addressing the challenges in XL-MS, such as the interpretation of complex spectra, low abundant cross-linked peptides, and a data acquisition bias, our current study integrates a peptide-centric approach for the analysis of XL-MS data and presents the foundation for integrating data-independent acquisition (DIA) in XL-MS with a vendor-neutral and open-source platform. A novel workflow is described for processing data-dependent acquisition (DDA) of PASEF-derived information. For this, software by Bruker Daltonics is used, enabling the conversion of these data into a format that is compatible with MeroX and Skyline software tools. Our approach significantly improves the identification of cross-linked products from complex mixtures, allowing the XL-MS community to overcome current analytical limitations.


Assuntos
Reagentes de Ligações Cruzadas , Espectrometria de Massas , Software , Fluxo de Trabalho , Reagentes de Ligações Cruzadas/química , Peptídeos/química , Peptídeos/análise , Humanos
5.
bioRxiv ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38645098

RESUMO

A thorough evaluation of the quality, reproducibility, and variability of bottom-up proteomics data is necessary at every stage of a workflow from planning to analysis. We share real-world case studies applying adaptable quality control (QC) measures to assess sample preparation, system function, and quantitative analysis. System suitability samples are repeatedly measured longitudinally with targeted methods, and we share examples where they are used on three instrument platforms to identify severe system failures and track function over months to years. Internal QCs incorporated at protein and peptide-level allow our team to assess sample preparation issues and to differentiate system failures from sample-specific issues. External QC samples prepared alongside our experimental samples are used to verify the consistency and quantitative potential of our results during batch correction and normalization before assessing biological phenotypes. We combine these controls with rapid analysis using Skyline, longitudinal QC metrics using AutoQC, and server-based data deposition using PanoramaWeb. We propose that this integrated approach to QC be used as a starting point for groups to facilitate rapid quality control assessment to ensure that valuable instrument time is used to collect the best quality data possible.

7.
J Proteome Res ; 22(10): 3290-3300, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37683181

RESUMO

We evaluate the quantitative performance of the newly released Asymmetric Track Lossless (Astral) analyzer. Using data-independent acquisition, the Thermo Scientific Orbitrap Astral mass spectrometer quantifies 5 times more peptides per unit time than state-of-the-art Thermo Scientific Orbitrap mass spectrometers, which have long been the gold standard for high-resolution quantitative proteomics. Our results demonstrate that the Orbitrap Astral mass spectrometer can produce high-quality quantitative measurements across a wide dynamic range. We also use a newly developed extracellular vesicle enrichment protocol to reach new depths of coverage in the plasma proteome, quantifying over 5000 plasma proteins in a 60 min gradient with the Orbitrap Astral mass spectrometer.


Assuntos
Peptídeos , Proteômica , Proteômica/métodos , Espectrometria de Massas/métodos , Proteoma/metabolismo , Proteínas Sanguíneas
8.
J Am Soc Mass Spectrom ; 34(10): 2199-2210, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37694881

RESUMO

Protein post-translational modifications (PTMs) are crucial and dynamic players in a large variety of cellular processes and signaling. Proteomic technologies have emerged as the method of choice to profile PTMs. However, these analyses remain challenging due to potential low PTM stoichiometry, the presence of multiple PTMs per proteolytic peptide, PTM site localization of isobaric peptides, and neutral losses. Collision-induced dissociation (CID) is commonly used to characterize PTMs, but the application of collision energy can lead to neutral losses and incomplete peptide sequencing for labile PTM groups. In this study, we assessed the performance of an alternative fragmentation, electron activated dissociation (EAD), to characterize, site localize, and quantify peptides with labile modifications in comparison to CID, both operated on a recently introduced fast-scanning quadrupole-time-of-flight (QqTOF) mass spectrometer. We analyzed biologically relevant phosphorylated, succinylated, malonylated, and acetylated synthetic peptides using targeted parallel reaction monitoring (PRM or MRMHR) assays. We report that electron-based fragmentation preserves the malonyl group from neutral losses. The novel tunable EAD kinetic energy maintained labile modification integrity and provided better peptide sequence coverage with strong PTM-site localization fragment ions. Activation of a novel trap-and-release technology significantly improves the duty cycle and provided significant MS/MS sensitivity gains by an average of 6-11-fold for EAD analyses. Evaluation of the quantitative EAD PRM workflows revealed high reproducibility with coefficients of variation of ∼2-7%, as well as very good linearity and quantification accuracy. This novel workflow combining EAD and trap-and-release technology provides high sensitivity, alternative fragmentation information to achieve confident PTM characterization and quantification.


Assuntos
Elétrons , Espectrometria de Massas em Tandem , Reprodutibilidade dos Testes , Proteômica/métodos , Proteínas/química , Processamento de Proteína Pós-Traducional , Peptídeos/química
9.
Cell Rep Methods ; 3(7): 100521, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37533638

RESUMO

Targeted proteomics is widely utilized in clinical proteomics; however, researchers often devote substantial time to manual data interpretation, which hinders the transferability, reproducibility, and scalability of this approach. We introduce DeepMRM, a software package based on deep learning algorithms for object detection developed to minimize manual intervention in targeted proteomics data analysis. DeepMRM was evaluated on internal and public datasets, demonstrating superior accuracy compared with the community standard tool Skyline. To promote widespread adoption, we have incorporated a stand-alone graphical user interface for DeepMRM and integrated its algorithm into the Skyline software package as an external tool.


Assuntos
Proteômica , Software , Reprodutibilidade dos Testes , Espectrometria de Massas , Algoritmos
10.
bioRxiv ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37398334

RESUMO

We evaluate the quantitative performance of the newly released Asymmetric Track Lossless (Astral) analyzer. Using data independent acquisition, the Thermo Scientific™ Orbitrap™ Astral™ mass spectrometer quantifies 5 times more peptides per unit time than state-of-the-art Thermo Scientific™ Orbitrap™ mass spectrometers, which have long been the gold standard for high resolution quantitative proteomics. Our results demonstrate that the Orbitrap Astral mass spectrometer can produce high quality quantitative measurements across a wide dynamic range. We also use a newly developed extra-cellular vesicle enrichment protocol to reach new depths of coverage in the plasma proteome, quantifying over 5,000 plasma proteins in a 60-minute gradient with the Orbitrap Astral mass spectrometer.

11.
J Proteome Res ; 22(5): 1466-1482, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37018319

RESUMO

The MSstats R-Bioconductor family of packages is widely used for statistical analyses of quantitative bottom-up mass spectrometry-based proteomic experiments to detect differentially abundant proteins. It is applicable to a variety of experimental designs and data acquisition strategies and is compatible with many data processing tools used to identify and quantify spectral features. In the face of ever-increasing complexities of experiments and data processing strategies, the core package of the family, with the same name MSstats, has undergone a series of substantial updates. Its new version MSstats v4.0 improves the usability, versatility, and accuracy of statistical methodology, and the usage of computational resources. New converters integrate the output of upstream processing tools directly with MSstats, requiring less manual work by the user. The package's statistical models have been updated to a more robust workflow. Finally, MSstats' code has been substantially refactored to improve memory use and computation speed. Here we detail these updates, highlighting methodological differences between the new and old versions. An empirical comparison of MSstats v4.0 to its previous implementations, as well as to the packages MSqRob and DEqMS, on controlled mixtures and biological experiments demonstrated a stronger performance and better usability of MSstats v4.0 as compared to existing methods.


Assuntos
Proteômica , Projetos de Pesquisa , Proteômica/métodos , Software , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos
12.
Nucleic Acids Res ; 51(D1): D1539-D1548, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36370099

RESUMO

Mass spectrometry (MS) is by far the most used experimental approach in high-throughput proteomics. The ProteomeXchange (PX) consortium of proteomics resources (http://www.proteomexchange.org) was originally set up to standardize data submission and dissemination of public MS proteomics data. It is now 10 years since the initial data workflow was implemented. In this manuscript, we describe the main developments in PX since the previous update manuscript in Nucleic Acids Research was published in 2020. The six members of the Consortium are PRIDE, PeptideAtlas (including PASSEL), MassIVE, jPOST, iProX and Panorama Public. We report the current data submission statistics, showcasing that the number of datasets submitted to PX resources has continued to increase every year. As of June 2022, more than 34 233 datasets had been submitted to PX resources, and from those, 20 062 (58.6%) just in the last three years. We also report the development of the Universal Spectrum Identifiers and the improvements in capturing the experimental metadata annotations. In parallel, we highlight that data re-use activities of public datasets continue to increase, enabling connections between PX resources and other popular bioinformatics resources, novel research and also new data resources. Finally, we summarise the current state-of-the-art in data management practices for sensitive human (clinical) proteomics data.


Assuntos
Proteômica , Software , Humanos , Bases de Dados de Proteínas , Espectrometria de Massas , Proteômica/métodos , Biologia Computacional/métodos
13.
J Proteome Res ; 22(2): 311-322, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36165806

RESUMO

In spite of its central role in biology and disease, protein turnover is a largely understudied aspect of most proteomic studies due to the complexity of computational workflows that analyze in vivo turnover rates. To address this need, we developed a new computational tool, TurnoveR, to accurately calculate protein turnover rates from mass spectrometric analysis of metabolic labeling experiments in Skyline, a free and open-source proteomics software platform. TurnoveR is a straightforward graphical interface that enables seamless integration of protein turnover analysis into a traditional proteomics workflow in Skyline, allowing users to take advantage of the advanced and flexible data visualization and curation features built into the software. The computational pipeline of TurnoveR performs critical steps to determine protein turnover rates, including isotopologue demultiplexing, precursor-pool correction, statistical analysis, and generation of data reports and visualizations. This workflow is compatible with many mass spectrometric platforms and recapitulates turnover rates and differential changes in turnover rates between treatment groups calculated in previous studies. We expect that the addition of TurnoveR to the widely used Skyline proteomics software will facilitate wider utilization of protein turnover analysis in highly relevant biological models, including aging, neurodegeneration, and skeletal muscle atrophy.


Assuntos
Proteômica , Software , Proteômica/métodos , Proteólise , Espectrometria de Massas/métodos , Fluxo de Trabalho , Marcação por Isótopo/métodos
14.
Nat Protoc ; 17(11): 2415-2430, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35831612

RESUMO

Lipidomics studies suffer from analytical and annotation challenges because of the great structural similarity of many of the lipid species. To improve lipid characterization and annotation capabilities beyond those afforded by traditional mass spectrometry (MS)-based methods, multidimensional separation methods such as those integrating liquid chromatography, ion mobility spectrometry, collision-induced dissociation and MS (LC-IMS-CID-MS) may be used. Although LC-IMS-CID-MS and other multidimensional methods offer valuable hydrophobicity, structural and mass information, the files are also complex and difficult to assess. Thus, the development of software tools to rapidly process and facilitate confident lipid annotations is essential. In this Protocol Extension, we use the freely available, vendor-neutral and open-source software Skyline to process and annotate multidimensional lipidomic data. Although Skyline ( https://skyline.ms/skyline.url ) was established for targeted processing of LC-MS-based proteomics data, it has since been extended such that it can be used to analyze small-molecule data as well as data containing the IMS dimension. This protocol uses Skyline's recently expanded capabilities, including small-molecule spectral libraries, indexed retention time and ion mobility filtering, and provides a step-by-step description for importing data, predicting retention times, validating lipid annotations, exporting results and editing our manually validated 500+ lipid library. Although the time required to complete the steps outlined here varies on the basis of multiple factors such as dataset size and familiarity with Skyline, this protocol takes ~5.5 h to complete when annotations are rigorously verified for maximum confidence.


Assuntos
Espectrometria de Mobilidade Iônica , Lipidômica , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Lipídeos
15.
Structure ; 30(9): 1269-1284.e6, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35716664

RESUMO

RING-between-RING (RBR) E3 ligases mediate ubiquitin transfer through an obligate E3-ubiquitin thioester intermediate prior to substrate ubiquitination. Although RBRs share a conserved catalytic module, substrate recruitment mechanisms remain enigmatic, and the relevant domains have yet to be identified for any member of the class. Here we characterize the interaction between the auto-inhibited RBR, HHARI (AriH1), and its target protein, 4EHP, using a combination of XL-MS, HDX-MS, NMR, and biochemical studies. The results show that (1) a di-aromatic surface on the catalytic HHARI Rcat domain forms a binding platform for substrates and (2) a phosphomimetic mutation on the auto-inhibitory Ariadne domain of HHARI promotes release and reorientation of Rcat for transthiolation and substrate modification. The findings identify a direct binding interaction between a RING-between-RING ligase and its substrate and suggest a general model for RBR substrate recognition.


Assuntos
Proteínas Culina , Ubiquitina , Domínio Catalítico , Proteínas Culina/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitinação
16.
J Proteome Res ; 21(1): 289-294, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34919405

RESUMO

Skyline Batch is a newly developed Windows forms application that enables the easy and consistent reprocessing of data with Skyline. Skyline has made previous advances in this direction; however, none enable seamless automated reprocessing of local and remote files. Skyline keeps a log of all of the steps that were taken in the document; however, reproducing these steps takes time and allows room for human error. Skyline also has a command-line interface, enabling it to be run from a batch script, but using the program in this way requires expertise in editing these scripts. By formalizing the workflow of a highly used set of batch scripts into an intuitive and powerful user interface, Skyline Batch can reprocess data stored in remote repositories just by opening and running a Skyline Batch configuration file. When run, a Skyline Batch configuration downloads all necessary remote files and then runs a four-step Skyline workflow. By condensing the steps needed to reprocess the data into one file, Skyline Batch gives researchers the opportunity to publish their processing along with their data and other analysis files. These easily run configuration files will greatly increase the transparency and reproducibility of published work. Skyline Batch is freely available at https://skyline.ms/batch.url.


Assuntos
Software , Interface Usuário-Computador , Humanos , Reprodutibilidade dos Testes , Fluxo de Trabalho
17.
J Proteome Res ; 21(1): 232-242, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34874736

RESUMO

The implication of lipid dysregulation in diseases, toxic exposure outcomes, and inflammation has brought great interest to lipidomic studies. However, lipids have proven to be analytically challenging due to their highly isomeric nature and vast concentration ranges in biological matrices. Therefore, multidimensional techniques such as those integrating liquid chromatography, ion mobility spectrometry, collision-induced dissociation, and mass spectrometry (LC-IMS-CID-MS) have been implemented to separate lipid isomers as well as provide structural information and increased identification confidence. These data sets are however extremely large and complex, resulting in challenges for data processing and annotation. Here, we have overcome these challenges by developing sample-specific multidimensional lipid libraries using the freely available software Skyline. Specifically, the human plasma library developed for this work contains over 500 unique lipids and is combined with adapted Skyline functions such as indexed retention time (iRT) for retention time prediction and IMS drift time filtering for enhanced selectivity. For comparison with other studies, this database was used to annotate LC-IMS-CID-MS data from a NIST SRM 1950 extract. The same workflow was then utilized to assess plasma and bronchoalveolar lavage fluid (BALF) samples from patients with varying degrees of smoke inhalation injury to identify lipid-based patient prognostic and diagnostic markers.


Assuntos
Lipidômica , Lesão por Inalação de Fumaça , Cromatografia Líquida , Humanos , Espectrometria de Mobilidade Iônica , Lipídeos
18.
Nat Methods ; 17(12): 1237-1244, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33199889

RESUMO

Several challenges remain in data-independent acquisition (DIA) data analysis, such as to confidently identify peptides, define integration boundaries, remove interferences, and control false discovery rates. In practice, a visual inspection of the signals is still required, which is impractical with large datasets. We present Avant-garde as a tool to refine DIA (and parallel reaction monitoring) data. Avant-garde uses a novel data-driven scoring strategy: signals are refined by learning from the dataset itself, using all measurements in all samples to achieve the best optimization. We evaluate the performance of Avant-garde using benchmark DIA datasets and show that it can determine the quantitative suitability of a peptide peak, and reach the same levels of selectivity, accuracy, and reproducibility as manual validation. Avant-garde is complementary to existing DIA analysis engines and aims to establish a strong foundation for subsequent analysis of quantitative mass spectrometry data.


Assuntos
Análise de Dados , Curadoria de Dados/métodos , Ciência de Dados/métodos , Proteoma/análise , Proteômica/métodos , Linhagem Celular , Células HEK293 , Humanos , Espectrometria de Massas/métodos , Peptídeos/análise , Reprodutibilidade dos Testes , Software
19.
Bioinformatics ; 36(15): 4366-4368, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32467974

RESUMO

SUMMARY: Skyline is a Windows application for targeted mass spectrometry method creation and quantitative data analysis. Like most graphical user interface (GUI) tools, it has a complex user interface with many ways for users to edit their files which makes the task of logging user actions challenging and is the reason why audit logging of every change is not common in GUI tools. We present an object comparison-based approach to audit logging for Skyline that is extensible to other GUI tools. The new audit logging system keeps track of all document modifications made through the GUI or the command line and displays them in an interactive grid. The audit log can also be uploaded and viewed in Panorama, a web repository for Skyline documents that can be configured to only accept documents with a valid audit log, based on embedded hashes to protect log integrity. This makes workflows involving Skyline and Panorama more reproducible. AVAILABILITY AND IMPLEMENTATION: Skyline is freely available at https://skyline.ms. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Espectrometria de Massas , Fluxo de Trabalho
20.
Mol Cell Proteomics ; 19(6): 944-959, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32234965

RESUMO

In bottom-up mass spectrometry-based proteomics, relative protein quantification is often achieved with data-dependent acquisition (DDA), data-independent acquisition (DIA), or selected reaction monitoring (SRM). These workflows quantify proteins by summarizing the abundances of all the spectral features of the protein (e.g. precursor ions, transitions or fragments) in a single value per protein per run. When abundances of some features are inconsistent with the overall protein profile (for technological reasons such as interferences, or for biological reasons such as post-translational modifications), the protein-level summaries and the downstream conclusions are undermined. We propose a statistical approach that automatically detects spectral features with such inconsistent patterns. The detected features can be separately investigated, and if necessary, removed from the data set. We evaluated the proposed approach on a series of benchmark-controlled mixtures and biological investigations with DDA, DIA and SRM data acquisitions. The results demonstrated that it could facilitate and complement manual curation of the data. Moreover, it can improve the estimation accuracy, sensitivity and specificity of detecting differentially abundant proteins, and reproducibility of conclusions across different data processing tools. The approach is implemented as an option in the open-source R-based software MSstats.


Assuntos
Espectrometria de Massas/métodos , Proteínas/análise , Proteômica/métodos , Bases de Dados de Proteínas , Processamento de Proteína Pós-Traducional , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...