Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(28): 14002-14010, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31221762

RESUMO

The T cell receptor (TCR) initiates the elimination of pathogens and tumors by T cells. To avoid damage to the host, the receptor must be capable of discriminating between wild-type and mutated self and nonself peptide ligands presented by host cells. Exactly how the TCR does this is unknown. In resting T cells, the TCR is largely unphosphorylated due to the dominance of phosphatases over the kinases expressed at the cell surface. However, when agonist peptides are presented to the TCR by major histocompatibility complex proteins expressed by antigen-presenting cells (APCs), very fast receptor triggering, i.e., TCR phosphorylation, occurs. Recent work suggests that this depends on the local exclusion of the phosphatases from regions of contact of the T cells with the APCs. Here, we developed and tested a quantitative treatment of receptor triggering reliant only on TCR dwell time in phosphatase-depleted cell contacts constrained in area by cell topography. Using the model and experimentally derived parameters, we found that ligand discrimination likely depends crucially on individual contacts being ∼200 nm in radius, matching the dimensions of the surface protrusions used by T cells to interrogate their targets. The model not only correctly predicted the relative signaling potencies of known agonists and nonagonists but also achieved this in the absence of kinetic proofreading. Our work provides a simple, quantitative, and predictive molecular framework for understanding why TCR triggering is so selective and fast and reveals that, for some receptors, cell topography likely influences signaling outcomes.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Receptores de Antígenos de Linfócitos T/química , Animais , Humanos , Cinética , Ligantes , Ativação Linfocitária/genética , Complexo Principal de Histocompatibilidade/imunologia , Microvilosidades/genética , Microvilosidades/imunologia , Modelos Teóricos , Peptídeos/química , Peptídeos/imunologia , Fosforilação/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Imagem Individual de Molécula , Linfócitos T/química , Linfócitos T/imunologia
2.
Biochem Soc Trans ; 45(5): 1077-1085, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28842530

RESUMO

Signalling by pattern recognition receptors (PRRs) is critical for protecting the host against pathogens. Disruption of these signalling pathways has been implicated in many diseases ranging from infection susceptibility to cancer and autoimmune disease. Understanding how PRRs signal is of critical importance due to their potential as therapeutic targets to ameliorate symptoms of inflammatory diseases. The recent advances in microscopy, such as the discovery of fluorescent proteins and the breaking of the diffraction limit of light, offer a unique opportunity to visualise receptor signalling at a single protein level within living cells. Many different microscopy techniques have been developed and used for dissecting different aspects of PRR signalling pathways. This review will provide an overview of the main microscopy techniques used for dissecting these pathways with a focus on Toll-like receptor and NOD-like receptor signalling.


Assuntos
Inflamação/metabolismo , Proteínas NLR/metabolismo , Receptores Toll-Like/metabolismo , Animais , Humanos , Microscopia , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais
3.
Philos Trans R Soc Lond B Biol Sci ; 370(1661): 20140033, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25533091

RESUMO

Salmonella enterica causes a range of important diseases in humans and a in a variety of animal species. The ability of bacteria to adhere to, invade and survive within host cells plays an important role in the pathogenesis of Salmonella infections. In systemic salmonellosis, macrophages constitute a niche for the proliferation of bacteria within the host organism. Salmonella enterica serovar Typhimurium is flagellated and the frequency with which this bacterium collides with a cell is important for infection efficiency. We investigated how bacterial motility affects infection efficiency, using a combination of population-level macrophage infection experiments and direct imaging of single-cell infection events, comparing wild-type and motility mutants. Non-motile and aflagellate bacterial strains, in contrast to wild-type bacteria, collide less frequently with macrophages, are in contact with the cell for less time and infect less frequently. Run-biased Salmonella also collide less frequently with macrophages but maintain contact with macrophages for a longer period of time than wild-type strains and infect the cells more readily. Our results suggest that uptake of S. Typhimurium by macrophages is dependent upon the duration of contact time of the bacterium with the cell, in addition to the frequency with which the bacteria collide with the cell.


Assuntos
Aderência Bacteriana/fisiologia , Adesão Celular/fisiologia , Macrófagos/fisiologia , Salmonella typhimurium/fisiologia , Animais , Linhagem Celular , Camundongos , Movimento , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...