Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958416

RESUMO

We present an investigation of the ultrafast dynamics of the polycyclic aromatic hydrocarbon fluorene initiated by an intense femtosecond near-infrared laser pulse (810 nm) and probed by a weak visible pulse (405 nm). Using a multichannel detection scheme (mass spectra, electron and ion velocity-map imaging), we provide a full disentanglement of the complex dynamics of the vibronically excited parent molecule, its excited ionic states, and fragments. We observed various channels resulting from the strong-field ionization regime. In particular, we observed the formation of the unstable tetracation of fluorene, above-threshold ionization features in the photoelectron spectra, and evidence of ubiquitous secondary fragmentation. We produced a global fit of all observed time-dependent photoelectron and photoion channels. This global fit includes four parent ions extracted from the mass spectra, 15 kinetic-energy-resolved ionic fragments extracted from ion velocity map imaging, and five photoelectron channels obtained from electron velocity map imaging. The fit allowed for the extraction of 60 lifetimes of various metastable photoinduced intermediates.

2.
Langmuir ; 39(46): 16554-16561, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37947385

RESUMO

Copper-thiolate self-assembly nanostructures are a unique class of nanomaterials because of their interesting properties such as hierarchical structures, luminescence, and large nonlinear optical efficiency. Herein, we synthesized biomolecule cysteine (Cys) and glutathione (GSH) capped sub-100 nm self-assembly nanoparticles (Cu-Cys-GSH NPs) with red fluorescence. The as-synthesized NPs show high emission enhancement in the presence of ethanol, caused by the aggregation-induced emission. We correlated the structure and optical properties of Cu-Cys-GSH NPs by measuring the mass, morphology, and surface charge as well as their two-photon excited fluorescence cross-section (σ2PEPL), two-photon absorption cross-section (σTPA) and first hyperpolarizability (ß) of Cu-Cys-GSH NPs in water and water-ethanol using near-infrared wavelength. We found a high ß value as (77 ± 10) × 10-28 esu (in water) compared to the reference medium water. The estimated values of σ2PEPL and σTPA are found to be (13 ± 2) GM and (1.4 ± 0.2) × 104 GM, respectively. We hope our investigations of linear and nonlinear optical properties of copper-thiolate self-assemblies in water and its solvent-induced aggregates will open up new possibilities in designing self-assembled systems for many applications including sensing, drug delivery, and catalysis.

3.
Molecules ; 28(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37513382

RESUMO

Adamantane, the smallest diamondoid molecule with a symmetrical cage, contains two distinct carbon sites, CH and CH2. The ionization/excitation of the molecule leads to the cage opening and strong structural reorganization. While theoretical predictions suggest that the carbon site CH primarily causes the cage opening, the role of the other CH2 site remains unclear. In this study, we used advanced experimental Auger electron-ion coincidence techniques and theoretical calculations to investigate the fragmentation dynamics of adamantane after resonant inner-shell photoexcitation. Our results demonstrate that some fragmentation channels exhibit site-sensitivity of the initial core-hole location, indicating that different carbon site excitations could lead to unique cage opening mechanisms.

4.
J Chem Phys ; 158(11): 114301, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36948841

RESUMO

The valence ionization of uracil and mixed water-uracil clusters has been studied experimentally and by ab initio calculations. In both measurements, the spectrum onset shows a red shift with respect to the uracil molecule, with the mixed cluster characterized by peculiar features unexplained by the sum of independent contributions of the water or uracil aggregation. To interpret and assign all the contributions, we performed a series of multi-level calculations, starting from an exploration of several cluster structures using automated conformer-search algorithms based on a tight-binding approach. Ionization energies have been assessed on smaller clusters via a comparison between accurate wavefunction-based approaches and cost-effective DFT-based simulations, the latter of which were applied to clusters up to 12 uracil and 36 water molecules. The results confirm that (i) the bottom-up approach based on a multilevel method [Mattioli et al. Phys. Chem. Chem. Phys. 23, 1859 (2021)] to the structure of neutral clusters of unknown experimental composition converges to precise structure-property relationships and (ii) the coexistence of pure and mixed clusters in the water-uracil samples. A natural bond orbital (NBO) analysis performed on a subset of clusters highlighted the special role of H-bonds in the formation of the aggregates. The NBO analysis yields second-order perturbative energy between the H-bond donor and acceptor orbitals correlated with the calculated ionization energies. This sheds light on the role of the oxygen lone-pairs of the uracil CO group in the formation of strong H-bonds, with a stronger directionality in mixed clusters, giving a quantitative explanation for the formation of core-shell structures.

5.
Phys Chem Chem Phys ; 25(7): 5795-5807, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36744651

RESUMO

Photodissociation molecular dynamics of gas-phase 2,5-diiodothiophene molecules was studied in an electron-energy-resolved electron-multi-ion coincidence experiment performed at the FinEstBeAMS beamline of MAX IV synchrotron. Following the photoionization of the iodine 4d subshell and the Auger decay, the dissociation landscape of the molecular dication was investigated as a function of the Auger electron energy. Concentrating on an major dissociation pathway, C4H2I2S2+ → C4H2S+ + I+ + I, and accessing the timescales of the process via ion momentum correlation analysis, it was revealed how this three-body process changes depending on the available internal energy. Using a generalized secondary dissociation model, the process was shown to evolve from secondary dissociation regime towards concerted dissociation as the available energy increased, with the secondary dissociation time constant changing from 1.5 ps to 129 fs. The experimental results were compared with simulations using a stochastic charge-hopping molecular mechanics model. It represented the observed trend and also gave a fair quantitative agreement with the experiment.

6.
Phys Chem Chem Phys ; 24(47): 28994-29003, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36444992

RESUMO

We investigate the fragmentation dynamics of adamantane dications produced after core-ionization at the carbon edge followed by Auger decay. The combination of high-resolution electron spectroscopy, energy-resolved electron-ion multi-coincidence spectroscopy and different theoretical models allows us to give a complete characterization of the processes involved after ionization. We show that energy- and site-sensitivity is observed even for a highly-symmetric molecule that lacks any unique atomic site.

7.
Nat Commun ; 13(1): 5205, 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057622

RESUMO

Photoionization of atoms and molecules is one of the fastest processes in nature. The understanding of the ultrafast temporal dynamics of this process often requires the characterization of the different angular momentum channels over a broad energy range. Using a two-photon interferometry technique based on extreme ultraviolet and infrared ultrashort pulses, we measure the phase and amplitude of the individual angular momentum channels as a function of kinetic energy in the outer-shell photoionization of neon. This allows us to unravel the influence of channel interference as well as the effect of the short-range, Coulomb and centrifugal potentials, on the dynamics of the photoionization process.

8.
Nature ; 608(7923): 488-493, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35978126

RESUMO

Rabi oscillations are periodic modulations of populations in two-level systems interacting with a time-varying field1. They are ubiquitous in physics with applications in different areas such as photonics2, nano-electronics3, electron microscopy4 and quantum information5. While the theory developed by Rabi was intended for fermions in gyrating magnetic fields, Autler and Townes realized that it could also be used to describe coherent light-matter interactions within the rotating-wave approximation6. Although intense nanometre-wavelength light sources have been available for more than a decade7-9, Rabi dynamics at such short wavelengths has not been directly observed. Here we show that femtosecond extreme-ultraviolet pulses from a seeded free-electron laser10 can drive Rabi dynamics between the ground state and an excited state in helium atoms. The measured photoelectron signal reveals an Autler-Townes doublet and an avoided crossing, phenomena that are both fundamental to coherent atom-field interactions11. Using an analytical model derived from perturbation theory on top of the Rabi model, we find that the ultrafast build-up of the doublet structure carries the signature of a quantum interference effect between resonant and non-resonant photoionization pathways. Given the recent availability of intense attosecond12 and few-femtosecond13 extreme-ultraviolet pulses, our results unfold opportunities to carry out ultrafast manipulation of coherent processes at short wavelengths using free-electron lasers.

9.
Phys Chem Chem Phys ; 24(38): 23096-23105, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35876592

RESUMO

We investigated the dissociation of dications and trications of three polycyclic aromatic hydrocarbons (PAHs), fluorene, phenanthrene, and pyrene. PAHs are a family of molecules ubiquitous in space and involved in much of the chemistry of the interstellar medium. In our experiments, ions are formed by interaction with 30.3 nm extreme ultraviolet (XUV) photons, and their velocity map images are recorded using a PImMS2 multi-mass imaging sensor. Application of recoil-frame covariance analysis allows the total kinetic energy release (TKER) associated with multiple fragmentation channels to be determined to high precision, ranging 1.94-2.60 eV and 2.95-5.29 eV for the dications and trications, respectively. Experimental measurements are supported by Born-Oppenheimer molecular dynamics (BOMD) simulations.

10.
Phys Chem Chem Phys ; 23(37): 21249-21261, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34542547

RESUMO

We studied the gas-phase photodissociation of a fully halogenated aromatic molecule, tetrabromothiophene, upon core-shell ionization by using synchrotron radiation and energy-resolved multiparticle coincidence spectroscopy. Photodynamics was initiated by the selective soft X-ray ionization of three elements - C, S, and Br - leading to the formation of dicationic states by Auger decay. From a detailed study of photodissociation upon Br 3d ionization, we formulate a general fragmentation scheme, where dissociation into neutral fragments and a pair of cations prevails, but dicationic species are also produced. We conclude that dicationic tetrabromothiophene typically undergoes deferred charge separation (with one of the ions being often Br+) that may be followed by secondary dissociation steps, depending on the available internal energy of the parent dication. Observations suggest that the ejection of neutral bromine atoms as the first step of deferred charge separation is a prevailing feature in dicationic dissociation, although sometimes in this step the C-Br bonds appear to remain intact and the thiophene ring is broken instead. Ionization-site-specific effects are observed particularly in doubly charged fragments and as large differences in the yields of the intact parent dication. We interpret these effects, using first-principles calculations and molecular dynamics simulations of core-hole states, as likely caused by the geometry changes during the core-hole lifetime.

11.
Phys Chem Chem Phys ; 23(28): 15049-15058, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34231588

RESUMO

The properties of mixed water-uracil nanoaggregates have been probed by core electron-photoemission measurements to investigate supramolecular assembly in the gas phase driven by weak interactions. The interpretation of the measurements has been assisted by multilevel atomistic simulations, based on semi-empirical tight-binding and DFT-based methods. Our protocol established a positive-feedback loop between experimental and computational techniques, which has enabled a sound and detailed atomistic description of such complex heterogeneous molecular aggregates. Among biomolecules, uracil offers interesting and generalized skeletal features; its structure encompasses an alternation of hydrophilic H-bond donor and acceptor sites and hydrophobic moieties, typical in biomolecular systems, that induces a supramolecular core-shell-like organization of the mixed clusters with a water core and an uracil shell. This structure is far from typical models of both solid-state hydration, with water molecules in defined positions, or liquid solvation, where disconnected uracil molecules are completely surrounded by water.


Assuntos
Nanoestruturas/química , Uracila/química , Água/química , Teoria da Densidade Funcional , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Espectroscopia Fotoeletrônica , Solventes/química , Espectrometria de Fluorescência , Termodinâmica
12.
Sci Rep ; 10(1): 13081, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753713

RESUMO

The C, N and O 1s XPS spectra of uracil clusters in the gas phase have been measured. A new bottom-up approach, which relies on computational simulations starting from the crystallographic structure of uracil, has been adopted to interpret the measured spectra. This approach sheds light on the different molecular interactions (H-bond, π-stacking, dispersion interactions) at work in the cluster and provides a good understanding of the observed XPS chemical shifts with respect to the isolated molecule in terms of intramolecular and intermolecular screening occurring after the core-hole ionization. The proposed bottom-up approach, reasonably expensive in terms of computational resources, has been validated by finite-temperature molecular dynamics simulations of clusters composed of up to fifty molecules.

13.
Opt Express ; 28(1): 394-404, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-32118967

RESUMO

Singleshot polychromatic coherent diffractive imaging is performed with a high-intensity high-order harmonic generation source. The coherence properties are analyzed and several reconstructions show the shot-to-shot fluctuations of the incident beam wavefront. The method is based on a multi-step approach. First, the spectrum is extracted from double-slit diffraction data. The spectrum is used as input to extract the monochromatic sample diffraction pattern, then phase retrieval is performed on the quasi-monochromatic data to obtain the sample's exit surface wave. Reconstructions based on guided error reduction (ER) and alternating direction method of multipliers (ADMM) are compared. ADMM allows additional penalty terms to be included in the cost functional to promote sparsity within the reconstruction.

14.
Sci Rep ; 10(1): 2884, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32076001

RESUMO

This work presents a photodissociation study of the diamondoid adamantane using extreme ultraviolet femtosecond pulses. The fragmentation dynamics of the dication is unraveled by the use of advanced ion and electron spectroscopy giving access to the dissociation channels as well as their energetics. To get insight into the fragmentation dynamics, we use a theoretical approach combining potential energy surface determination, statistical fragmentation methods and molecular dynamics simulations. We demonstrate that the dissociation dynamics of adamantane dications takes place in a two-step process: barrierless cage opening followed by Coulomb repulsion-driven fragmentation.

15.
Phys Chem Chem Phys ; 21(46): 25749-25762, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31720608

RESUMO

While largely studied on the macroscopic scale, the dynamics leading to nucleation and fission processes in atmospheric aerosols are still poorly understood at the molecular level. Here, we present a joint experimental-theoretical study of a model system consisting of hydrogen-bonded ammonia and water molecules. Experimentally, the clusters were produced via adiabatic co-expansion. Double ionization ionic products were prepared using synchrotron radiation and analyzed with coincidence mass- and 3D momentum spectroscopy. Calculations were carried out using ab initio molecular dynamics to understand the fragmentation within the first ∼500 fs. Further exploration of the potential energy surfaces was performed at a DFT level of theory to gain information on the energetics of the processes. Water was identified as an efficient nano-droplet stabilizer, and is found to have a significant effect even at low water content. On the molecular level, the stabilizing role of water can be related to an increase in the dissociation energy between ammonia molecules and the water enriched environment at the cluster surface. Furthermore, our results support the role of ammonium as a charge carrier in the solution, preferentially bound to surrounding ammonia molecules, which can influence the atmospheric nucleation process.

16.
Phys Rev Lett ; 123(13): 133201, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31697513

RESUMO

In a seminal article, Fano predicts that absorption of light occurs preferably with increase of angular momentum. We generalize Fano's propensity rule to laser-assisted photoionization, consisting of absorption of an extreme-ultraviolet photon followed by absorption or emission of an infrared photon. The predicted asymmetry between absorption and emission leads to incomplete quantum interference in attosecond photoelectron interferometry. It explains both the angular dependence of the photoionization time delays and the delay dependence of the photoelectron angular distributions. Our theory is verified by experimental results in Ar in the 20-40 eV range.

17.
Proc Natl Acad Sci U S A ; 116(11): 4779-4787, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30824594

RESUMO

The shortest light pulses produced to date are of the order of a few tens of attoseconds, with central frequencies in the extreme UV range and bandwidths exceeding tens of electronvolts. They are often produced as a train of pulses separated by half the driving laser period, leading in the frequency domain to a spectrum of high, odd-order harmonics. As light pulses become shorter and more spectrally wide, the widely used approximation consisting of writing the optical waveform as a product of temporal and spatial amplitudes does not apply anymore. Here, we investigate the interplay of temporal and spatial properties of attosecond pulses. We show that the divergence and focus position of the generated harmonics often strongly depend on their frequency, leading to strong chromatic aberrations of the broadband attosecond pulses. Our argument uses a simple analytical model based on Gaussian optics, numerical propagation calculations, and experimental harmonic divergence measurements. This effect needs to be considered for future applications requiring high-quality focusing while retaining the broadband/ultrashort characteristics of the radiation.

18.
Opt Express ; 27(3): 2656-2670, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30732300

RESUMO

We perform wavefront measurements of high-order harmonics using an extreme-ultraviolet (XUV) Hartmann sensor and study how their spatial properties vary with different generation parameters, such as pressure in the nonlinear medium, fundamental pulse energy and duration as well as beam size. In some conditions, excellent wavefront quality (up to λ/11) was obtained. The high throughput of the intense XUV beamline at the Lund Laser Centre allows us to perform single-shot measurements of both the full harmonic beam generated in argon and individual harmonics selected by multilayer mirrors. We theoretically analyze the relationship between the spatial properties of the fundamental and those of the generated high-order harmonics, thus gaining insight into the fundamental mechanisms involved in high-order harmonic generation (HHG).

19.
J Chem Phys ; 149(20): 204313, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30501230

RESUMO

The photodissociation dynamics of CH3I and CH2ClI at 272 nm were investigated by time-resolved Coulomb explosion imaging, with an intense non-resonant 815 nm probe pulse. Fragment ion momenta over a wide m/z range were recorded simultaneously by coupling a velocity map imaging spectrometer with a pixel imaging mass spectrometry camera. For both molecules, delay-dependent pump-probe features were assigned to ultraviolet-induced carbon-iodine bond cleavage followed by Coulomb explosion. Multi-mass imaging also allowed the sequential cleavage of both carbon-halogen bonds in CH2ClI to be investigated. Furthermore, delay-dependent relative fragment momenta of a pair of ions were directly determined using recoil-frame covariance analysis. These results are complementary to conventional velocity map imaging experiments and demonstrate the application of time-resolved Coulomb explosion imaging to photoinduced real-time molecular motion.

20.
Rev Sci Instrum ; 89(4): 043104, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29716322

RESUMO

In the present paper, we describe a new home-built crossed-beam apparatus devoted to ion-induced ionization and fragmentation of isolated biologically relevant molecular systems. The biomolecular ions are produced by an electrospray ionization source, mass-over-charge selected, accumulated in a 3D ion trap, and then guided to the extraction region of an orthogonal time-of-flight mass spectrometer. Here, the target molecular ions interact with a keV atomic ion beam produced by an electron cyclotron resonance ion source. Cationic products from the collision are detected on a position sensitive detector and analyzed by time-of-flight mass spectrometry. A detailed description of the operation of the setup is given, and early results from irradiation of a protonated pentapeptide (leucine-enkephalin) by a 7 keV He+ ion beam are presented as a proof-of-principle.


Assuntos
Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas em Tandem/instrumentação , Elétrons , Encefalina Leucina/química , Desenho de Equipamento , Gases/química , Hélio/química , Íons/química , Cinética , Estudo de Prova de Conceito
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...