Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638930

RESUMO

No gene has garnered more interest than p53 since its discovery over 40 years ago. In the last two decades, thanks to seminal work from Uri Alon and Ghalit Lahav, p53 has defined a truly synergistic topic in the field of mathematical biology, with a rich body of research connecting mathematic endeavour with experimental design and data. In this review we survey and distill the extensive literature of mathematical models of p53. Specifically, we focus on models which seek to reproduce the oscillatory dynamics of p53 in response to DNA damage. We review the standard modelling approaches used in the field categorising them into three types: time delay models, spatial models and coupled negative-positive feedback models, providing sample model equations and simulation results which show clear oscillatory dynamics. We discuss the interplay between mathematics and biology and show how one informs the other; the deep connections between the two disciplines has helped to develop our understanding of this complex gene and paint a picture of its dynamical response. Although yet more is to be elucidated, we offer the current state-of-the-art understanding of p53 response to DNA damage.


Assuntos
Algoritmos , Dano ao DNA , Modelos Teóricos , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Simulação por Computador , Retroalimentação Fisiológica , Humanos , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética
2.
J Theor Biol ; 468: 27-44, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30753839

RESUMO

Transcription factors are important molecules which control the levels of mRNA and proteins within cells by modulating the process of transcription (the mechanism by which mRNA is produced within cells) and hence translation (the mechanism by which proteins are produced within cells). Transcription factors are part of a wider family of molecular interaction networks known as gene regulatory networks (GRNs) which play an important role in key cellular processes such as cell division and apoptosis (e.g. the p53-Mdm2, NFκB pathways). Transcription factors exert control over molecular levels through feedback mechanisms, with proteins binding to gene sites in the nucleus and either up-regulating or down-regulating production of mRNA. In many GRNs, there is a negative feedback in the network and the transcription rate is reduced. Typically, this leads to the mRNA and protein levels oscillating over time and also spatially between the nucleus and cytoplasm. When experimental data for such systems is analysed, it is observed to be noisy and in many cases the actual numbers of molecules involved are quite low. In order to model such systems accurately and connect with the data in a quantitative way, it is therefore necessary to adopt a stochastic approach as well as take into account the spatial aspect of the problem. In this paper, we extend previous work in the area by formulating and analysing stochastic spatio-temporal models of synthetic GRNs e.g. repressilators and activator-repressor systems.


Assuntos
Redes Reguladoras de Genes , Genes Sintéticos , Modelos Genéticos , Simulação por Computador , Difusão , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/metabolismo , Processos Estocásticos
3.
Bull Math Biol ; 80(5): 1366-1403, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28634857

RESUMO

In this paper, we present two mathematical models related to different aspects and scales of cancer growth. The first model is a stochastic spatiotemporal model of both a synthetic gene regulatory network (the example of a three-gene repressilator is given) and an actual gene regulatory network, the NF-[Formula: see text]B pathway. The second model is a force-based individual-based model of the development of a solid avascular tumour with specific application to tumour cords, i.e. a mass of cancer cells growing around a central blood vessel. In each case, we compare our computational simulation results with experimental data. In the final discussion section, we outline how to take the work forward through the development of a multiscale model focussed at the cell level. This would incorporate key intracellular signalling pathways associated with cancer within each cell (e.g. p53-Mdm2, NF-[Formula: see text]B) and through the use of high-performance computing be capable of simulating up to [Formula: see text] cells, i.e. the tissue scale. In this way, mathematical models at multiple scales would be combined to formulate a multiscale computational model.


Assuntos
Modelos Biológicos , Neoplasias/patologia , Animais , Simulação por Computador , Redes Reguladoras de Genes , Humanos , Conceitos Matemáticos , Neoplasias/genética , Transdução de Sinais , Análise Espaço-Temporal , Processos Estocásticos
4.
Math Biosci Eng ; 14(1): 249-262, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27879131

RESUMO

Signal transduction pathways play a major role in many important aspects of cellular function e.g. cell division, apoptosis. One important class of signal transduction pathways is gene regulatory networks (GRNs). In many GRNs, proteins bind to gene sites in the nucleus thereby altering the transcription rate. Such proteins are known as transcription factors. If the binding reduces the transcription rate there is a negative feedback leading to oscillatory behaviour in mRNA and protein levels, both spatially (e.g. by observing fluorescently labelled molecules in single cells) and temporally (e.g. by observing protein/mRNA levels over time). Recent computational modelling has demonstrated that spatial movement of the molecules is a vital component of GRNs and may cause the oscillations. These numerical findings have subsequently been proved rigorously i.e. the diffusion coefficient of the protein/mRNA acts as a bifurcation parameter and gives rise to a Hopf bifurcation. In this paper we first present a model of the canonical GRN (the Hes1 protein) and show the effect of varying the spatial location of gene and protein production sites on the oscillations. We then extend the approach to examine spatio-temporal models of synthetic gene regulatory networks e.g. n-gene repressilators and activator-repressor systems.


Assuntos
Redes Reguladoras de Genes , Modelos Genéticos , Genes/genética , Humanos , Biossíntese de Proteínas/fisiologia , Transdução de Sinais
5.
J Theor Biol ; 407: 51-70, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27449790

RESUMO

Gene regulatory networks (GRNs) play an important role in maintaining cellular function by correctly timing key processes such as cell division and apoptosis. GRNs are known to contain similar structural components, which describe how genes and proteins within a network interact - typically by feedback. In many GRNs, proteins bind to gene-sites in the nucleus thereby altering the transcription rate. If the binding reduces the transcription rate there is a negative feedback leading to oscillatory behaviour in mRNA and protein levels, both spatially (e.g. by observing fluorescently labelled molecules in single cells) and temporally (e.g. by observing protein/mRNA levels over time). Mathematical modelling of GRNs has focussed on such oscillatory behaviour. Recent computational modelling has demonstrated that spatial movement of the molecules is a vital component of GRNs, while it has been proved rigorously that the diffusion coefficient of the protein/mRNA acts as a bifurcation parameter and gives rise to a Hopf-bifurcation. In this paper we consider the spatial aspect further by considering the specific location of gene and protein production, showing that there is an optimum range for the distance between an mRNA gene-site and a protein production site in order to achieve oscillations. We first present a model of a well-known GRN, the Hes1 system, and then extend the approach to examine spatio-temporal models of synthetic GRNs e.g. n-gene repressilator and activator-repressor systems. By incorporating the idea of production sites into such models we show that the spatial component is vital to fully understand GRN dynamics.


Assuntos
Redes Reguladoras de Genes , Animais , Simulação por Computador , Difusão , Regulação da Expressão Gênica , Humanos , Modelos Genéticos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/metabolismo , Especificidade da Espécie , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...