Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1139121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36967803

RESUMO

Introduction: The apelin receptor binds two distinct endogenous peptides, apelin and ELA, which act in an autocrine/paracrine manner to regulate the human cardiovascular system. As a class A GPCR, targeting the apelin receptor is an attractive therapeutic strategy. With improvements in imaging techniques, and the stability and brightness of dyes, fluorescent ligands are becoming increasingly useful in studying protein targets. Here, we describe the design and validation of four novel fluorescent ligands; two based on [Pyr1]apelin-13 (apelin488 and apelin647), and two based on ELA-14 (ELA488 and ELA647). Methods: Fluorescent ligands were pharmacologically assessed using radioligand and functional in vitro assays. Apelin647 was validated in high content imaging and internalisation studies, and in a clinically relevant human embryonic stem cell-derived cardiomyocyte model. Apelin488 and ELA488 were used to visualise apelin receptor binding in human renal tissue. Results: All four fluorescent ligands retained the ability to bind and activate the apelin receptor and, crucially, triggered receptor internalisation. In high content imaging studies, apelin647 bound specifically to CHO-K1 cells stably expressing apelin receptor, providing proof-of-principle for a platform that could screen novel hits targeting this GPCR. The ligand also bound specifically to endogenous apelin receptor in stem cell-derived cardiomyocytes. Apelin488 and ELA488 bound specifically to apelin receptor, localising to blood vessels and tubules of the renal cortex. Discussion: Our data indicate that the described novel fluorescent ligands expand the pharmacological toolbox for studying the apelin receptor across multiple platforms to facilitate drug discovery.


Assuntos
Hormônios Peptídicos , Cricetinae , Animais , Humanos , Receptores de Apelina/metabolismo , Ligantes , Hormônios Peptídicos/metabolismo , Cricetulus , Ligação Proteica
2.
Stem Cell Reports ; 18(2): 555-569, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36669494

RESUMO

Marfan syndrome (MFS) is a rare connective tissue disorder caused by mutations in FBN1. Patients with MFS notably suffer from aortic aneurysm and dissection. Despite considerable effort, animal models have proven to be poorly predictive for therapeutic intervention in human aortic disease. Patient-derived induced pluripotent stem cells can be differentiated into vascular smooth muscle cells (VSMCs) and recapitulate major features of MFS. We have screened 1,022 small molecules in our in vitro model, exploiting the highly proteolytic nature of MFS VSMCs, and identified 36 effective compounds. Further analysis identified GSK3ß as a recurring target in the compound screen. GSK3ß inhibition/knockdown did not ameliorate the proliferation defect in MFS-VSMCs but improved MFS-VSMC proteolysis and apoptosis and partially rescued fibrillin-1 deposition. To conclude, we have identified GSK3ß as a novel target for MFS, forming the foundation for future work in MFS and other aortic diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome de Marfan , Animais , Humanos , Síndrome de Marfan/genética , Músculo Liso Vascular , Aorta , Glicogênio Sintase Quinase 3 beta
3.
Cardiovasc Res ; 119(2): 587-598, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36239923

RESUMO

AIMS: The apelin receptor, a G protein-coupled receptor, has emerged as a key regulator of cardiovascular development, physiology, and disease. However, there is a lack of suitable human in vitro models to investigate the apelinergic system in cardiovascular cell types. For the first time we have used human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and a novel inducible knockdown system to examine the role of the apelin receptor in both cardiomyocyte development and to determine the consequences of loss of apelin receptor function as a model of disease. METHODS AND RESULTS: Expression of the apelin receptor and its ligands in hESCs and hESC-CMs was determined. hESCs carrying a tetracycline-inducible short hairpin RNA targeting the apelin receptor were generated using the sOPTiKD system. Phenotypic assays characterized the consequences of either apelin receptor knockdown before hESC-CM differentiation (early knockdown) or in 3D engineered heart tissues as a disease model (late knockdown). hESC-CMs expressed the apelin signalling system at a similar level to the adult heart. Early apelin receptor knockdown decreased cardiomyocyte differentiation efficiency and prolonged voltage sensing, associated with asynchronous contraction. Late apelin receptor knockdown had detrimental consequences on 3D engineered heart tissue contractile properties, decreasing contractility and increasing stiffness. CONCLUSIONS: We have successfully knocked down the apelin receptor, using an inducible system, to demonstrate a key role in hESC-CM differentiation. Knockdown in 3D engineered heart tissues recapitulated the phenotype of apelin receptor down-regulation in a failing heart, providing a potential platform for modelling heart failure and testing novel therapeutic strategies.


Assuntos
Células-Tronco Embrionárias Humanas , Miócitos Cardíacos , Adulto , Humanos , Miócitos Cardíacos/metabolismo , Apelina/genética , Apelina/metabolismo , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Células-Tronco Embrionárias/metabolismo , Diferenciação Celular
4.
Sci Rep ; 11(1): 24336, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934117

RESUMO

ACE2 is a membrane protein that regulates the cardiovascular system. Additionally, ACE2 acts as a receptor for host cell infection by human coronaviruses, including SARS-CoV-2 that emerged as the cause of the on-going COVID-19 pandemic and has brought unprecedented burden to economy and health. ACE2 binds the spike protein of SARS-CoV-2 with high affinity and shows little variation in amino acid sequence meaning natural resistance is rare. The discovery of a novel short ACE2 isoform (deltaACE2) provides evidence for inter-individual differences in SARS-CoV-2 susceptibility and severity, and likelihood of developing subsequent 'Long COVID'. Critically, deltaACE2 loses SARS-CoV-2 spike protein binding sites in the extracellular domain, and is predicted to confer reduced susceptibility to viral infection. We aimed to assess the differential expression of full-length ACE2 versus deltaACE2 in a panel of human tissues (kidney, heart, lung, and liver) that are implicated in COVID-19, and confirm ACE2 protein in these tissues. Using dual antibody staining, we show that deltaACE2 localises, and is enriched, in lung airway epithelia and bile duct epithelia in the liver. Finally, we also confirm that a fluorescently tagged SARS-CoV-2 spike protein monomer shows low binding at lung and bile duct epithelia where dACE2 is enriched.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Ductos Biliares/metabolismo , Ductos Biliares/virologia , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Humanos , Pulmão/metabolismo , Pulmão/virologia , Microscopia de Fluorescência por Excitação Multifotônica , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Virais/química , Receptores Virais/metabolismo , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Internalização do Vírus
5.
Commun Biol ; 4(1): 926, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326460

RESUMO

Patients with cardiovascular comorbidities are more susceptible to severe infection with SARS-CoV-2, known to directly cause pathological damage to cardiovascular tissue. We outline a screening platform using human embryonic stem cell-derived cardiomyocytes, confirmed to express the protein machinery critical for SARS-CoV-2 infection, and a SARS-CoV-2 spike-pseudotyped virus system. The method has allowed us to identify benztropine and DX600 as novel inhibitors of SARS-CoV-2 infection in a clinically relevant stem cell-derived cardiomyocyte line. Discovery of new medicines will be critical for protecting the heart in patients with SARS-CoV-2, and for individuals where vaccination is contraindicated.


Assuntos
Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Embrionárias Humanas/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/virologia , SARS-CoV-2/fisiologia , Benzotropina/farmacologia , Humanos , Miócitos Cardíacos/citologia , Peptídeos/farmacologia
6.
Pharmacol Rev ; 71(4): 467-502, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31492821

RESUMO

The predicted protein encoded by the APJ gene discovered in 1993 was originally classified as a class A G protein-coupled orphan receptor but was subsequently paired with a novel peptide ligand, apelin-36 in 1998. Substantial research identified a family of shorter peptides activating the apelin receptor, including apelin-17, apelin-13, and [Pyr1]apelin-13, with the latter peptide predominating in human plasma and cardiovascular system. A range of pharmacological tools have been developed, including radiolabeled ligands, analogs with improved plasma stability, peptides, and small molecules including biased agonists and antagonists, leading to the recommendation that the APJ gene be renamed APLNR and encode the apelin receptor protein. Recently, a second endogenous ligand has been identified and called Elabela/Toddler, a 54-amino acid peptide originally identified in the genomes of fish and humans but misclassified as noncoding. This precursor is also able to be cleaved to shorter sequences (32, 21, and 11 amino acids), and all are able to activate the apelin receptor and are blocked by apelin receptor antagonists. This review summarizes the pharmacology of these ligands and the apelin receptor, highlights the emerging physiologic and pathophysiological roles in a number of diseases, and recommends that Elabela/Toddler is a second endogenous peptide ligand of the apelin receptor protein.


Assuntos
Receptores de Apelina/metabolismo , Hormônios Peptídicos/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Sequência de Aminoácidos , Animais , Apelina/metabolismo , Apelina/farmacologia , Receptores de Apelina/agonistas , Receptores de Apelina/antagonistas & inibidores , Receptores de Apelina/química , Humanos , Ligantes , Modelos Moleculares , Hormônios Peptídicos/química , Hormônios Peptídicos/farmacologia , Conformação Proteica , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...