Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 651: 36-46, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37540928

RESUMO

Cysteine, as a non-aromatic precursor, was used to produce Nitrogen (N) and Sulfur (S) sources for preparing N, S-doped carbon dots (CDs) with tunable luminescence emission. Despite the tremendous investigations, the photoluminescence (PL) mechanism of CDs is still unclear due to its complex core-shell structure, variety of surface functional groups, and structure dependency. This study focuses on controlling aromatization and graphitization processes during the hydrothermal synthesis on CDs by using Citric Acid (CA) and Ammonium persulfate. Detailed characterizations by FTIR spectroscopy, XPS, and HR-TEM are provided to suggest both chemical and bandgap structures. Results reveal that the red-shift of PL occurred due to the graphitization and increasing content of graphitic nitrogen in the core, as well as the Pyridinic and Amine groups creating sub-bands on the surface. These findings resolve the controversy on the PL mechanism of Cysteine-based CDs and provide a general guide for increasing the aromatization and graphitization degree from non-aromatic precursors which clarify the mechanism exploration and structural analysis of other types of CDs.

2.
Bioact Mater ; 11: 107-117, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34938916

RESUMO

Systemic chemotherapy has lost its position to treat cancer over the past years mainly due to drug resistance, side effects, and limited survival ratio. Among a plethora of local drug delivery systems to solve this issue, the combinatorial strategy of chemo-hyperthermia has recently received attention. Herein we developed a magneto-thermal nanocarrier consisted of superparamagnetic iron oxide nanoparticles (SPIONs) coated by a blend formulation of a three-block copolymer Pluronic F127 and F68 on the oleic acid (OA) in which Curcumin as a natural and chemical anti-cancer agent was loaded. The subsequent nanocarrier SPION@OA-F127/F68-Cur was designed with a controlled gelation temperature of the shell, which could consequently control the release of curcumin. The release was systematically studied as a function of temperature and pH, via response surface methodology (RSM). The bone tumor killing efficacy of the released curcumin from the carrier in combination with the hyperthermia was studied on MG-63 osteosarcoma cells through Alamar blue assay, live-dead staining and apoptosis caspase 3/7 activation kit. It was found that the shrinkage of the F127/F68 layer stimulated by elevated temperature in an alternative magnetic field caused the curcumin release. Although the maximum release concentration and cell death took place at 45 °C, treatment at 41 °C was chosen as the optimum condition due to considerable cell apoptosis and lower side effects of mild hyperthermia. The cell metabolic activity results confirmed the synergistic effects of curcumin and hyperthermia in killing MG-63 osteosarcoma cells.

3.
Mater Sci Eng C Mater Biol Appl ; 79: 783-792, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28629081

RESUMO

Natural silk fibroin (SF) polymer has biomedical and mechanical properties as a biomaterial for bone tissue engineering scaffolds. Freeze-dried porous nanocomposite scaffolds were prepared from silk fibroin and titanium dioxide (TiO2) nanoparticles as a bioactive reinforcing agent by a phase separation method. In order to fabricate SF/TiO2 scaffolds, 5, 10, 15 and 20wt% of the TiO2 were added to the SF. The phase structure, functional groups and morphology of the scaffolds were evaluated using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy techniques, respectively. Porosity of the scaffolds was measured by Archimedes' Principle. In addition, mechanical properties of prepared scaffolds were evaluated by measuring the compressive strength and compressive modulus. The bioactivity property of these scaffolds was examined for 7, 14, 21 and 28days immersion in simulated body fluid (SBF) at 37°C and the in vitro degradation was studied by incubation in phosphate buffered saline (PBS) at 37°C and pH7.4 for up to 30days. Moreover, the scaffolds' biocompatibility was evaluated by seeding and culture of SaOS-2 osteoblast-like cells and assessment of their proliferation with MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Results showed that the prepared scaffolds had directional porosity and the reduction of porosity in composite scaffolds with higher contents of TiO2 nanoparticles resulted to an improvement of the mechanical strength. The macroporous structures with open interconnected and directional pores were successfully obtained without applying any porogen or inorganic solvent. The bioactivity of these scaffolds was confirmed by scanning electron microscopy (SEM) showing surface crystallization of the apatite layer proportional to the duration of immersion in the SBF and the degradation rate of scaffolds were increased by increasing the TiO2 content. The osteoblast-like cells showed a high attachment and proliferation on these scaffolds and their viability was increased with increasing the SF content. Finally, an optimum composition of SF/TiO2 nanocomposite scaffolds was selected.


Assuntos
Nanocompostos , Fibroínas , Porosidade , Seda , Engenharia Tecidual , Alicerces Teciduais , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...