Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1310: 342719, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811136

RESUMO

BACKGROUND: Separation, classification, and focusing of microparticles are essential issues in microfluidic devices that can be implemented in two categories: using labeling and label-free methods. Label-free methods differentiate microparticles based on their inherent properties, including size, density, shape, electrical conductivity/permittivity, and magnetic susceptibility. Dielectrophoresis is an advantageous label-free technique for this objective. Besides, centrifugal microfluidic devices exploit centrifugal forces to move liquid and particles. The simultaneous combination of dielectrophoretic and centrifugal forces exerted on microparticles still needs to be scrutinized more to predict their trajectories in such devices. RESULTS: An integrated system utilizing two categories in microfluidics is proposed: dielectrophoretic manipulation of microparticles and centrifugal-driven microfluidics, followed by a numerical analysis. In this regard, we assumed a rectangular microchannel with internal unilateral planar electrodes equipped with three equal-sized outlets placed radially on a centrifugal platform where microparticles flow toward the disc's outer edge. The effect of different coordinate-based parameters, including radial and lateral distances (X and Y offsets)/tilting angles toward the radius direction (α), on the particles' movement was investigated. Additionally, the effect of operational parameters, including applied voltage, the microchannel width, the number of enabled electrodes, the diameter of particles, and the configuration of electrodes, were analyzed, and the distributions of particles toward the outlets were monitored. It was found that enhanced particle focusing becomes possible at lower rotation speeds and higher electric field values. Furthermore, the proposed centrifugal-DEP system's efficiency for classifying red blood cells/platelets and Live/Dead yeast cells systems was evaluated. SIGNIFICANCE: Our integrated system is introduced as a novel method for focusing and classifying various microparticles with no need for sheath flows, having the ability to conduct particles at desired routes and focusing width. Furthermore, the system effectively separates various bioparticles and offers ease of operation and high-efficiency throughput over conventional dielectrophoretic devices.

2.
Biosens Bioelectron ; 246: 115830, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38039729

RESUMO

The limit of detection (LOD), speed, and cost of crucial COVID-19 diagnostic tools, including lateral flow assays (LFA), enzyme-linked immunosorbent assays (ELISA), and polymerase chain reactions (PCR), have all improved because of the financial and governmental support for the epidemic. The most notable improvement in overall efficiency among them has been seen with PCR. Its significance for human health increased during the COVID-19 pandemic, when it emerged as the commonly used approach for identifying the virus. However, because of problems with speed, complexity, and expense, PCR deployment in point-of-care settings continues to be difficult. Microfluidic platforms offer a promising solution by enabling the development of smaller, more affordable, and faster PCR systems. In this review, we delve into the engineering challenges associated with the advancement of high-speed microfluidic PCR equipment. We introduce criteria that facilitate the evaluation and comparison of factors such as speed, LOD, cycling efficiency, and multiplexing capacity, considering sample volume, fluidics, PCR reactor geometry and materials, as well as heating/cooling methods. We also provide a comprehensive list of commercially available PCR devices and conclude with projections and a discussion regarding the current obstacles that need to be addressed in order to progress further in this field.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , COVID-19/diagnóstico , Pandemias , Reação em Cadeia da Polimerase , Microfluídica , Teste para COVID-19
3.
Micromachines (Basel) ; 14(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37630070

RESUMO

Limit of detection (LOD), speed, and cost for some of the most important diagnostic tools, i.e., lateral flow assays (LFA), enzyme-linked immunosorbent assays (ELISA), and polymerase chain reaction (PCR), all benefited from both the financial and regulatory support brought about by the pandemic. From those three, PCR has gained the most in overall performance. However, implementing PCR in point of care (POC) settings remains challenging because of its stringent requirements for a low LOD, multiplexing, accuracy, selectivity, robustness, and cost. Moreover, from a clinical point of view, it has become very desirable to attain an overall sample-to-answer time (t) of 10 min or less. Based on those POC requirements, we introduce three parameters to guide the design towards the next generation of PCR reactors: the overall sample-to-answer time (t); lambda (λ), a measure that sets the minimum number of copies required per reactor volume; and gamma (γ), the system's thermal efficiency. These three parameters control the necessary sample volume, the number of reactors that are feasible (for multiplexing), the type of fluidics, the PCR reactor shape, the thermal conductivity, the diffusivity of the materials used, and the type of heating and cooling systems employed. Then, as an illustration, we carry out a numerical simulation of temperature changes in a PCR device, discuss the leading commercial and RT-qPCR contenders under development, and suggest approaches to achieve the PCR reactor for RT-qPCR of the future.

4.
Nanoscale ; 15(40): 16277-16286, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37650749

RESUMO

Biopolymer microgels present many opportunities in biomedicine and tissue engineering. To understand their in vivo behavior in therapeutic interventions, long-term monitoring is critical, which is usually achieved by incorporating fluorescent materials within the hydrogel matrix. Current research is limited due to issues concerning the biocompatibility and instability of the conventional fluorescent species, which also tend to adversely affect the bio-functionality of the hydrogels. Here, we introduce a microfluidic-based approach to generate nitrogen-functionalized graphene quantum dot (NGQD) incorporated gelatin methacryloyl (GelMA) hydrogel microspheres, capable of long-term monitoring while preserving or enhancing the other favorable features of 3D cell encapsulation. A multilayer droplet-based microfluidic device was designed and fabricated to make monodisperse NGQD-loaded GelMA hydrogel microspheres encapsulating skeletal muscle cells (C2C12). Control over the sizes of microspheres could be achieved by tuning the flow rates in the microfluidic device. Skeletal muscle cells encapsulated in these microgels exhibited high cell viability from day 1 (82.9 ± 6.50%) to day 10 (92.1 ± 3.90%). The NGQD-loaded GelMA microgels encapsulating the cells demonstrated higher metabolic activity compared to the GelMA microgels. Presence of sarcomeric α-actin was verified by immunofluorescence staining on day 10. A fluorescence signal was observed from the NGQD-loaded microgels during the entire period of the study. The investigation reveals the advantages of integrating NGQDs in microgels for non-invasive imaging and monitoring of cell-laden microspheres and presents new opportunities for future therapeutic applications.


Assuntos
Grafite , Microgéis , Pontos Quânticos , Engenharia Tecidual , Hidrogéis , Gelatina , Metacrilatos
5.
Micromachines (Basel) ; 14(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37421028

RESUMO

Proper mixing in microfluidic devices has been a concern since the early development stages. Acoustic micromixers (active micromixers) attract significant attention due to their high efficiency and ease of implementation. Finding the optimal geometries, structures, and characteristics of acoustic micromixers is still a challenging issue. In this study, we considered leaf-shaped obstacle(s) having a multi-lobed structure as the oscillatory part(s) of acoustic micromixers in a Y-junction microchannel. Four different types of leaf-shaped oscillatory obstacles, including 1, 2, 3, and 4-lobed structures, were defined, and their mixing performance for two fluid streams was evaluated numerically. The geometrical parameters of the leaf-shaped obstacle(s), including the number of lobes, lobes' length, lobes' inside angle, and lobes' pitch angle, were analyzed, and their optimum operational values were discovered. Additionally, the effects of the placement of oscillatory obstacles in three configurations, i.e., at the junction center, on the side walls, and both, on the mixing performance were evaluated. It was found that by increasing the number and length of lobes, the mixing efficiency improved. Furthermore, the effect of the operational parameters, such as inlet velocity, frequency, and intensity of acoustic waves, was examined on mixing efficiency. Meanwhile, the occurrence of a bimolecular reaction in the microchannel was analyzed at different reaction rates. It was proven that the reaction rate has a prominent effect at higher inlet velocities.

6.
Biosens Bioelectron ; 214: 114381, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35820257

RESUMO

Many advanced microfluidic Lab-on-disc (LOD) devices require an on-board power supply for powering active components. LODs with an on-board electrical power supply are called electrified-LODs (eLODs) and are the subject of the present review. This survey comprises two main parts. First, we discuss the different means of delivering electrical energy to a spinning disc including slip-ring, wireless power transmission, and on-board power supply. In the second part, we focus on utilizing electrical power on eLODs for three electrokinetic microfluidic processes: electrophoresis, electroosmotic flow, and dielectrophoresis. Electrokinetic phenomena enable propulsion, separation, and manipulation of different fluids and various types of microparticles/cells. We summarize the theoretical and experimental results for all three electrokinetic phenomena enacted on centrifugal platforms. While extensive numerical modeling and experimental research are available for electrokinetics on stationary platforms, there is a noticeable lack of development in this area when executed on rotating platforms. The review concludes by comparing the strengths and weaknesses of different electrokinetic techniques implemented on centrifugal platforms, and additionally, the most promising applications of electrokinetic-assisted eLOD devices are singled out.


Assuntos
Técnicas Biossensoriais , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Eletro-Osmose , Eletroforese , Técnicas Analíticas Microfluídicas/normas , Técnicas Analíticas Microfluídicas/tendências
7.
Micromachines (Basel) ; 13(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35744496

RESUMO

The fluidic barrier in centrifugal microfluidic platforms is a newly introduced concept for making multiple emulsions and microparticles. In this study, we focused on particle generation application to better characterize this method. Because the phenomenon is too fast to be captured experimentally, we employ theoretical models to show how liquid polymeric droplets pass a fluidic barrier before crosslinking. We explain how secondary flows evolve and mix the fluids within the droplets. From an experimental point of view, the effect of different parameters, such as the barrier length, source channel width, and rotational speed, on the particles' size and aspect ratio are investigated. It is demonstrated that the barrier length does not affect the particle's ultimate velocity. Unlike conventional air gaps, the barrier length does not significantly affect the aspect ratio of the produced microparticles. Eventually, we broaden this concept to two source fluids and study the importance of source channel geometry, barrier length, and rotational speed in generating two-fluid droplets.

8.
Lab Chip ; 22(14): 2695-2706, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35737382

RESUMO

Heterogeneous immunoassays (HI) are an invaluable tool for biomarker detection and remain an ideal candidate for microfluidic point-of-care diagnostics. However, automating and controlling sustained fluid flow from benchtop to microfluidics for the HI reaction during the extended sample incubation step, remains difficult to implement; this leads to challenges for assay integration and assay result interpretation. To address these issues, we investigated the liquid reciprocation process on a microfluidic centrifugal disc (CD) to generate continuous, bidirectional fluid flow using only a rotating motor. Large volumetric flow rates (µL s-1) through the HI reaction chamber were sustained for extended durations (up to 1 h). The CD liquid reciprocation operating behavior was characterized experimentally and simulated to determine fluid flow shear rates through our HI reaction chamber. We demonstrated the continuous CD liquid reciprocation for target molecule incubation for a microarray HI and that higher fluid shear rates negatively influenced our fluorescence intensity. We highlight the importance of proper fluid flow considerations when integrating HIs with microfluidics.


Assuntos
COVID-19 , Técnicas Analíticas Microfluídicas , Bioensaio , Humanos , Imunoensaio , Microfluídica
9.
Langmuir ; 37(17): 5118-5130, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33877832

RESUMO

Chemical bioreactions are an important aspect of many recent microfluidic devices, and their applications in biomedical science have been growing worldwide. Droplet-based microreactors are among the attractive types of unit operations, which utilize droplets for enhancement in both mixing and chemical reactions. In the present study, a finite-volume-method (FVM) numerical investigation is conducted based on the volume-of-fluid (VOF) applying for the droplet-based flows. This multiphase computational modeling is used for the study of the chemical reaction and mixing phenomenon inside a serpentine microchannel and explores the effects of the aspect ratio (i.e., AR = height/width) of rectangular cross-sectional geometries as well as three other cross-sectional geometries including trapezoidal, triangular, and circular, on consumption and production rates of chemical species. It is found that in these droplet bioreactors, the reaction begins from the forward section of the droplet. We investigate the secondary flows and chemical reactions inside the droplets in a serpentine microchannel with different cross-sectional geometries. Different transient Dean vortices and secondary flows in the presence and absence of the droplets are studied and explained based on the position of the droplets. It is found that as the droplets pass through the microchannel turns, the patterns and magnitude of the secondary flows change, depending on the cross-sectional geometry. Eventually, the results demonstrate that the AR = 2 rectangular cross-section is the most helpful geometry, whereas the trapezoidal cross-section takes into account the least efficient one between all geometries.

10.
Micromachines (Basel) ; 11(6)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580516

RESUMO

The use of multiphase flows in microfluidics to carry dispersed phase material (droplets, particles, bubbles, or fibers) has many applications. In this review paper, we focus on such flows on centrifugal microfluidic platforms and present different methods of dispersed phase material generation. These methods are classified into three specific categories, i.e., step emulsification, crossflow, and dispenser nozzle. Previous works on these topics are discussed and related parameters and specifications, including the size, material, production rate, and rotational speed are explicitly mentioned. In addition, the associated theories and important dimensionless numbers are presented. Finally, we discuss the commercialization of these devices and show a comparison to unveil the pros and cons of the different methods so that researchers can select the centrifugal droplet/particle generation method which better suits their needs.

11.
Lab Chip ; 20(8): 1318-1357, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32242566

RESUMO

Centrifugal microfluidic platforms or lab-on-discs (LODs) have evolved into a popular technology for automating chemical and biological assays. LODs today enable scientists to implement and integrate different operational units, including fluid mixing, droplet generation, cell-sorting, gene amplification, analyte detection, and so forth. For an efficient design and cost-effective implementation of any microfluidic device, including LODs, theoretical analysis and considerations should play a more important role than they currently do. The theoretical analysis we will show is especially essential to the investigation of detailed phenomena at the small length scales and high-speed typical for LODs where a wide range of forces may be involved. Previous LOD review papers presented mostly experimental results with theory as an afterthought. Hence, a review paper focused on the theoretical aspects, and associated computational studies of LOD devices is an urgent need. In the present review paper, all previous computational studies on LOD devices are categorized as single-phase flows, two-phase flows, network simulation, and solids. For each of these categories, the governing equations and important formulas are presented and explained. Moreover, a handy scaling analysis is introduced to aid scientists when comparing different competing forces in LOD devices. We hope that by surveying and contrasting various theoretical LOD studies, we shed some light on existing controversies and reveal where additional theoretical work is needed.

12.
Anal Chim Acta ; 1068: 28-40, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31072475

RESUMO

Polymerase Chain Reaction (PCR) is an important and prevalent technique in biotechnology because of its crucial role in cloning DNA fragments and diagnostic applications. In the present study, a high-throughput two-phase PCR device is designed and fabricated which utilizes a serpentine microchannel together with a spiral structure. The former is for the droplet-generation and mixing and the latter is for the thermal cycling process. Moreover, the effect of diamond nanoparticles (diamondNP) on the performance of PCR is also investigated while using commercial PCR devices and the fabricated PCR device designed in this study. Using numerical simulation, it is shown that within the simple and easy-to-make microchannel structures designed in this study, there are different transient secondary flows which can help mixing the contents of the droplets including PCR solution and diamondNP. Moreover, a new fabrication process is used for the design of the droplet-generation chip which is applicable for the fabrication of all high-pressure microfluidic devices. It is found that the effect of diamondNPs on the PCR performance depends on the nanoparticle concentration; diamaondNPs can improve the PCR performance more than 5 times. On the other hand, if a high concentration of diamondNPs is used, PCR performance decreases significantly. Moreover, it is shown that the fabricated device is able to do the same PCR procedure faster than the commercial PCR devices.


Assuntos
Diamante/química , Nanopartículas/química , Reação em Cadeia da Polimerase , Desenho de Equipamento , Reação em Cadeia da Polimerase/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...