Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Food Nutr Res ; 106: 317-351, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37722777

RESUMO

This chapter examines how innovative and emerging food processing technologies, such as those that use heat, electricity, electromagnetic waves, and pressure, can modify protein denaturation, aggregation, and intermolecular interactions pathways, which can result in varying immunoreactive responses. It emphasizes the need to understand how these processing methods affect the protein epitopes recognized by antibodies and their respective priming pathways, especially during the sensitization stage that precedes an allergic response. Although traditional processing methods have been investigated, the impact of novel technologies on food protein allergenicity remains largely unknown. The chapter specifically focuses on milk proteins, which have clinical significance and are associated with cow's milk allergy, one of the most common food allergies in young children. Additionally, it examines potential scientific advancements that novel processing methods may bring to this field.


Assuntos
Hipersensibilidade Alimentar , Hipersensibilidade a Leite , Animais , Bovinos , Feminino , Alérgenos , Proteínas do Leite , Manipulação de Alimentos
2.
Nanomaterials (Basel) ; 13(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37570554

RESUMO

Nanosized delivery systems have been the subject of research and discussion in the scientific community due to their unique properties and functionality. However, studies reporting the behaviour of nanodelivery systems under dynamic in vitro digestion conditions are still very scarce. To address this gap, this study aims to assess the dynamic in vitro gastric digestion of lactoferrin/curcumin nanoparticles in the realistic gastric model (RGM). For this purpose, the INFOGEST standard semi-dynamic digestion protocol was used. The nanosystems were characterized in terms of hydrodynamic size, size distribution, polydispersity index (PdI), and zeta potential using dynamic light scattering (DLS), before and during the digestion process. Confocal laser scanning microscopy (CLSM) was also used to examine particle aggregation. In addition, the release of curcumin was evaluated spectroscopically and the intrinsic fluorescence of lactoferrin was measured throughout the digestion process. The protein hydrolysis was also determined by UV-VIS-SWNIR spectroscopy to estimate, in real-time, the presence of free NH2 groups during gastric digestion. It was possible to observe that lactoferrin/curcumin nanoparticles were destabilized during the dynamic digestion process. It was also possible to conclude that low sample volumes can pose a major challenge in the application of dynamic in vitro digestion models.

3.
J Food Sci Technol ; 57(4): 1393-1404, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32180635

RESUMO

Starch is the main sugar source present in staple foods. Understanding starch hydrolysis during digestion and the resulting glucose release can be important to strategically modulate starch digestion and glucose absorption. In vitro digestion methodologies are fundamental to evaluate starch hydrolysis length and rate, but the lack of uniformity between protocols prevent the comparison of results. In this context, three different Carolino rice varieties (i.e., Carolino white-Cw, Carolino brown-Cb and Carolino Ariete brown-CAb) were submitted to the INFOGEST harmonized in vitro digestion protocol for the evaluation of starch hydrolysis and subsequent glycemic index (GI) determination, and starch granules morphological study. Samples of Carolino rice presented total starch percentages between 64.52 (for Cb) to 71.52% (for Cw) with low amylose content (16.19-19.95%, varying in the following order Cb < Cab ≈ Cw). During digestion, between 39.43 (for CAb) to 44.48% (for Cb) of starch was hydrolyzed, classifying samples as medium GI foods (61.73-69.17). Starch hydrolysis was accompanied by a decrease of starch granules dimensions. For all samples, area decrease was higher than 59%, perimeter decrease was higher than 37%, feret diameter decrease was higher than 39% and minimum feret diameter decrease was higher than 32%. This work provides new insights to describe, both qualitatively and quantitatively, the fate of rice during digestion, and allowed establishing a comparative basis for the development of rice-based recipes with a lower GI.

4.
Adv Colloid Interface Sci ; 243: 23-45, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28395856

RESUMO

Micro- and nanoencapsulation is an emerging technology in the food field that potentially allows the improvement of food quality and human health. Bio-based delivery systems of bioactive compounds have a wide variety of morphologies that influence their stability and functional performance. The incorporation of bioactive compounds in food products using micro- and nano-delivery systems may offer extra health benefits, beyond basic nutrition, once their encapsulation may provide protection against undesired environmental conditions (e.g., heat, light and oxygen) along the food chain (including processing and storage), thus improving their bioavailability, while enabling their controlled release and target delivery. This review provides an overview of the bio-based materials currently used for encapsulation of bioactive compounds intended for food applications, as well as the main production techniques employed in the development of micro- and nanosystems. The behavior of such systems and of bioactive compounds entrapped into, throughout in vitro gastrointestinal systems, is also tracked in a critical manner. Comparisons between various in vitro digestion systems (including the main advantages and disadvantages) currently in use, as well as correlations between the behavior of micro- and nanosystems studied through in vitro and in vivo systems were highlighted and discussed here for the first time. Finally, examples of bioactive micro- and nanosystems added to food simulants or to real food matrices are provided, together with a revision of the main challenges for their safe commercialization, the regulatory issues involved and the main legislation aspects.


Assuntos
Manipulação de Alimentos/métodos , Nanocompostos/administração & dosagem , Nanocompostos/química , Anti-Infecciosos/administração & dosagem , Antioxidantes/administração & dosagem , Digestão , Sistemas de Liberação de Medicamentos/métodos , Alimentos , Humanos , Lipídeos/química , Polissacarídeos/química , Probióticos/administração & dosagem , Proteínas/química , Vitaminas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...