Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 112(9): 1416-1425.e5, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417435

RESUMO

Brief stimuli can trigger longer-lasting brain states. G-protein-coupled receptors (GPCRs) could help sustain such states by coupling slow-timescale molecular signals to neuronal excitability. Brainstem parabrachial nucleus glutamatergic (PBNGlut) neurons regulate sustained brain states such as pain and express Gs-coupled GPCRs that increase cAMP signaling. We asked whether cAMP in PBNGlut neurons directly influences their excitability and effects on behavior. Both brief tail shocks and brief optogenetic stimulation of cAMP production in PBNGlut neurons drove minutes-long suppression of feeding. This suppression matched the duration of prolonged elevations in cAMP, protein kinase A (PKA) activity, and calcium activity in vivo and ex vivo, as well as sustained, PKA-dependent increases in action potential firing ex vivo. Shortening this elevation in cAMP reduced the duration of feeding suppression following tail shocks. Thus, molecular signaling in PBNGlut neurons helps prolong neural activity and behavioral states evoked by brief, salient bodily stimuli.


Assuntos
Potenciais de Ação , AMP Cíclico , Comportamento Alimentar , Neurônios , Núcleos Parabraquiais , Animais , Núcleos Parabraquiais/fisiologia , Núcleos Parabraquiais/metabolismo , Neurônios/fisiologia , Neurônios/metabolismo , AMP Cíclico/metabolismo , Camundongos , Potenciais de Ação/fisiologia , Comportamento Alimentar/fisiologia , Optogenética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Masculino , Ácido Glutâmico/metabolismo , Tronco Encefálico/fisiologia , Tronco Encefálico/metabolismo , Camundongos Endogâmicos C57BL , Feminino
2.
Res Sq ; 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37546985

RESUMO

We investigated how transmission of hunger- and satiety-promoting neuropeptides, NPY and αMSH, is integrated at the level of intracellular signaling to control feeding. Receptors for these peptides use the second messenger cAMP. How cAMP integrates opposing peptide signals to regulate energy balance, and the in vivo spatiotemporal dynamics of endogenous peptidergic signaling, remain largely unknown. We show that AgRP axon stimulation in the paraventricular hypothalamus evokes probabilistic NPY release that triggers stochastic cAMP decrements in downstream MC4R-expressing neurons (PVHMC4R). Meanwhile, POMC axon stimulation triggers stochastic, αMSH-dependent cAMP increments. Release of either peptide impacts a ~100 µm diameter region, and when these peptide signals overlap, they compete to control cAMP. The competition is reflected by hunger-state-dependent differences in the amplitude and persistence of cAMP transients: hunger peptides are more efficacious in the fasted state, satiety peptides in the fed state. Feeding resolves the competition by simultaneously elevating αMSH release and suppressing NPY release, thereby sustaining elevated cAMP in PVHMC4R neurons. In turn, cAMP potentiates feeding-related excitatory inputs and promotes satiation across minutes. Our findings highlight how biochemical integration of opposing, quantal peptide signals during energy intake orchestrates a gradual transition between stable states of hunger and satiety.

3.
bioRxiv ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37503012

RESUMO

We investigated how transmission of hunger- and satiety-promoting neuropeptides, NPY and αMSH, is integrated at the level of intracellular signaling to control feeding. Receptors for these peptides use the second messenger cAMP, but the messenger's spatiotemporal dynamics and role in energy balance are controversial. We show that AgRP axon stimulation in the paraventricular hypothalamus evokes probabilistic and spatially restricted NPY release that triggers stochastic cAMP decrements in downstream MC4R-expressing neurons (PVH MC4R ). Meanwhile, POMC axon stimulation triggers stochastic, αMSH-dependent cAMP increments. NPY and αMSH competitively control cAMP, as reflected by hunger-state-dependent differences in the amplitude and persistence of cAMP transients evoked by each peptide. During feeding bouts, elevated αMSH release and suppressed NPY release cooperatively sustain elevated cAMP in PVH MC4R neurons, thereby potentiating feeding-related excitatory inputs and promoting satiation across minutes. Our findings highlight how state-dependent integration of opposing, quantal peptidergic events by a common biochemical target calibrates energy intake.

4.
Nature ; 620(7972): 154-162, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37495689

RESUMO

Fasting initiates a multitude of adaptations to allow survival. Activation of the hypothalamic-pituitary-adrenal (HPA) axis and subsequent release of glucocorticoid hormones is a key response that mobilizes fuel stores to meet energy demands1-5. Despite the importance of the HPA axis response, the neural mechanisms that drive its activation during energy deficit are unknown. Here, we show that fasting-activated hypothalamic agouti-related peptide (AgRP)-expressing neurons trigger and are essential for fasting-induced HPA axis activation. AgRP neurons do so through projections to the paraventricular hypothalamus (PVH), where, in a mechanism not previously described for AgRP neurons, they presynaptically inhibit the terminals of tonically active GABAergic afferents from the bed nucleus of the stria terminalis (BNST) that otherwise restrain activity of corticotrophin-releasing hormone (CRH)-expressing neurons. This disinhibition of PVHCrh neurons requires γ-aminobutyric acid (GABA)/GABA-B receptor signalling and potently activates the HPA axis. Notably, stimulation of the HPA axis by AgRP neurons is independent of their induction of hunger, showing that these canonical 'hunger neurons' drive many distinctly different adaptations to the fasted state. Together, our findings identify the neural basis for fasting-induced HPA axis activation and uncover a unique means by which AgRP neurons activate downstream neurons: through presynaptic inhibition of GABAergic afferents. Given the potency of this disinhibition of tonically active BNST afferents, other activators of the HPA axis, such as psychological stress, may also work by reducing BNST inhibitory tone onto PVHCrh neurons.


Assuntos
Jejum , Sistema Hipotálamo-Hipofisário , Neurônios , Sistema Hipófise-Suprarrenal , Proteína Relacionada com Agouti/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Jejum/fisiologia , Neurônios GABAérgicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Sistema Hipotálamo-Hipofisário/citologia , Sistema Hipotálamo-Hipofisário/metabolismo , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Sistema Hipófise-Suprarrenal/citologia , Sistema Hipófise-Suprarrenal/inervação , Sistema Hipófise-Suprarrenal/metabolismo , Terminações Pré-Sinápticas/metabolismo , Núcleos Septais/citologia , Núcleos Septais/metabolismo
5.
bioRxiv ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36865343

RESUMO

Brief stimuli can trigger longer lasting brain states. G protein-coupled receptors (GPCRs) could help sustain such states by coupling slow-timescale molecular signals to neuronal excitability. Brainstem parabrachial nucleus glutamatergic neurons (PBN Glut ) regulate sustained brain states such as pain, and express G s -coupled GPCRs that increase cAMP signaling. We asked whether cAMP directly influences PBN Glut excitability and behavior. Both brief tail shocks and brief optogenetic stimulation of cAMP production in PBN Glut neurons drove minutes-long suppression of feeding. This suppression matched the duration of prolonged elevations in cAMP, Protein Kinase A (PKA), and calcium activity in vivo and in vitro. Shortening this elevation in cAMP reduced the duration of feeding suppression following tail shocks. cAMP elevations in PBN Glut neurons rapidly lead to sustained increases in action potential firing via PKA-dependent mechanisms. Thus, molecular signaling in PBN Glut neurons helps prolong neural activity and behavioral states evoked by brief, salient bodily stimuli.

6.
Cell Metab ; 35(5): 770-785.e5, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36965483

RESUMO

Restricting caloric intake effectively reduces body weight, but most dieters fail long-term adherence to caloric deficit and eventually regain lost weight. Hypothalamic circuits that control hunger drive critically determine body weight; yet, how weight loss sculpts these circuits to motivate food consumption until lost weight is regained remains unclear. Here, we probe the contribution of synaptic plasticity in discrete excitatory afferents on hunger-promoting AgRP neurons. We reveal a crucial role for activity-dependent, remarkably long-lasting amplification of synaptic activity originating from paraventricular hypothalamus thyrotropin-releasing (PVHTRH) neurons in long-term body weight control. Silencing PVHTRH neurons inhibits the potentiation of excitatory input to AgRP neurons and diminishes concomitant regain of lost weight. Brief stimulation of the pathway is sufficient to enduringly potentiate this glutamatergic hunger synapse and triggers an NMDAR-dependent gaining of body weight that enduringly persists. Identification of this activity-dependent synaptic amplifier provides a previously unrecognized target to combat regain of lost weight.


Assuntos
Fome , Hipotálamo , Humanos , Fome/fisiologia , Proteína Relacionada com Agouti/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Peso Corporal
7.
Elife ; 102021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34787082

RESUMO

Insulin-induced hypoglycemia is a major treatment barrier in type-1 diabetes (T1D). Accordingly, it is important that we understand the mechanisms regulating the circulating levels of glucagon. Varying glucose over the range of concentrations that occur physiologically between the fed and fuel-deprived states (8 to 4 mM) has no significant effect on glucagon secretion in the perfused mouse pancreas or in isolated mouse islets (in vitro), and yet associates with dramatic increases in plasma glucagon. The identity of the systemic factor(s) that elevates circulating glucagon remains unknown. Here, we show that arginine-vasopressin (AVP), secreted from the posterior pituitary, stimulates glucagon secretion. Alpha-cells express high levels of the vasopressin 1b receptor (V1bR) gene (Avpr1b). Activation of AVP neurons in vivo increased circulating copeptin (the C-terminal segment of the AVP precursor peptide) and increased blood glucose; effects blocked by pharmacological antagonism of either the glucagon receptor or V1bR. AVP also mediates the stimulatory effects of hypoglycemia produced by exogenous insulin and 2-deoxy-D-glucose on glucagon secretion. We show that the A1/C1 neurons of the medulla oblongata drive AVP neuron activation in response to insulin-induced hypoglycemia. AVP injection increased cytoplasmic Ca2+ in alpha-cells (implanted into the anterior chamber of the eye) and glucagon release. Hypoglycemia also increases circulating levels of AVP/copeptin in humans and this hormone stimulates glucagon secretion from human islets. In patients with T1D, hypoglycemia failed to increase both copeptin and glucagon. These findings suggest that AVP is a physiological systemic regulator of glucagon secretion and that this mechanism becomes impaired in T1D.


Assuntos
Arginina Vasopressina/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Glucagon/metabolismo , Adulto , Animais , Arginina Vasopressina/administração & dosagem , Diabetes Mellitus Tipo 1/fisiopatologia , Feminino , Humanos , Masculino , Camundongos , Adulto Jovem
8.
Elife ; 102021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34585668

RESUMO

Water balance, tracked by extracellular osmolality, is regulated by feedback and feedforward mechanisms. Feedback regulation is reactive, occurring as deviations in osmolality are detected. Feedforward or presystemic regulation is proactive, occurring when disturbances in osmolality are anticipated. Vasopressin (AVP) is a key hormone regulating water balance and is released during hyperosmolality to limit renal water excretion. AVP neurons are under feedback and feedforward regulation. Not only do they respond to disturbances in blood osmolality, but they are also rapidly suppressed and stimulated, respectively, by drinking and eating, which will ultimately decrease and increase osmolality. Here, we demonstrate that AVP neuron activity is regulated by multiple anatomically and functionally distinct neural circuits. Notably, presystemic regulation during drinking and eating are mediated by non-overlapping circuits that involve the lamina terminalis and hypothalamic arcuate nucleus, respectively. These findings reveal neural mechanisms that support differential regulation of AVP release by diverse behavioral and physiological stimuli.


Fine-tuning the amount of water present in the body at any given time is a tight balancing act. The hormone vasopressin helps to ensure that organisms do not get too dehydrated by allowing water in the urine to be reabsorbed into the bloodstream. A group of vasopressin neurons in the brain trigger the release of the hormone if water levels get too low (as reflected by an increase in osmolality, the level of substances dissolved in a unit of blood). However, these cells also receive additional information that allows them to predict and respond to upcoming changes in water levels. For example, drinking water while dehydrated 'switches off' the neurons, even before osmolality is restored in the blood to normal levels. Eating, on the other hand, rapidly activates vasopressin neurons before the food is digested and blood osmolality increases as a result. How vasopressin neurons receive this 'anticipatory' information remains unclear. Kim et al. explored this question in mice by inhibiting different sets of brain cells one by one, and then examining whether the neurons could still exhibit anticipatory responses. This revealed a remarkable division of labor in the neural circuits that regulate vasopressin neurons: two completely different sets of neurons from distinct areas of the brain are dedicated to relaying anticipatory information about either water or food intake. These findings help to understand how healthy levels of water can be maintained in the body. Overall, they give a glimpse into the neural mechanisms that underlie anticipatory forms of regulation, which can also take place when hunger or thirst neurons 'foresee' that food or water will be consumed.


Assuntos
Arginina Vasopressina/metabolismo , Neurônios/fisiologia , Pressão Osmótica , Equilíbrio Hidroeletrolítico/fisiologia , Animais , Feminino , Hipotálamo/fisiologia , Masculino , Camundongos , Neurônios/metabolismo , Concentração Osmolar , Vasopressinas/metabolismo
9.
Nature ; 595(7869): 695-700, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34262177

RESUMO

Agouti-related peptide (AGRP)-expressing neurons are activated by fasting-this causes hunger1-4, an aversive state that motivates the seeking and consumption of food5,6. Eating returns AGRP neuron activity towards baseline on three distinct timescales: rapidly and transiently following sensory detection of food cues6-8, slowly and longer-lasting in response to nutrients in the gut9,10, and even more slowly and permanently with restoration of energy balance9,11. The rapid regulation by food cues is of particular interest as its neurobiological basis and purpose are unknown. Given that AGRP neuron activity is aversive6, the sensory cue-linked reductions in activity could function to guide behaviour. To evaluate this, we first identified the circuit mediating sensory cue inhibition and then selectively perturbed it to determine function. Here, we show that a lateral hypothalamic glutamatergic â†’ dorsomedial hypothalamic GABAergic (γ-aminobutyric acid-producing)12 → AGRP neuron circuit mediates this regulation. Interference with this circuit impairs food cue inhibition of AGRP neurons and, notably, greatly impairs learning of a sensory cue-initiated food-acquisition task. This is specific for food, as learning of an identical water-acquisition task is unaffected. We propose that decreases in aversive AGRP neuron activity6 mediated by this food-specific circuit increases the incentive salience13 of food cues, and thus facilitates the learning of food-acquisition tasks.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Sinais (Psicologia) , Alimentos , Fome/fisiologia , Vias Neurais , Neurônios/fisiologia , Animais , Região Hipotalâmica Lateral/fisiologia , Aprendizagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética
10.
Neuron ; 105(6): 1094-1111.e10, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31955944

RESUMO

Interoception, the sense of internal bodily signals, is essential for physiological homeostasis, cognition, and emotions. While human insular cortex (InsCtx) is implicated in interoception, the cellular and circuit mechanisms remain unclear. We imaged mouse InsCtx neurons during two physiological deficiency states: hunger and thirst. InsCtx ongoing activity patterns reliably tracked the gradual return to homeostasis but not changes in behavior. Accordingly, while artificial induction of hunger or thirst in sated mice via activation of specific hypothalamic neurons (AgRP or SFOGLUT) restored cue-evoked food- or water-seeking, InsCtx ongoing activity continued to reflect physiological satiety. During natural hunger or thirst, food or water cues rapidly and transiently shifted InsCtx population activity to the future satiety-related pattern. During artificial hunger or thirst, food or water cues further shifted activity beyond the current satiety-related pattern. Together with circuit-mapping experiments, these findings suggest that InsCtx integrates visceral-sensory signals of current physiological state with hypothalamus-gated amygdala inputs that signal upcoming ingestion of food or water to compute a prediction of future physiological state.


Assuntos
Córtex Cerebral/fisiologia , Fome/fisiologia , Interocepção/fisiologia , Sede/fisiologia , Proteína Relacionada com Agouti/metabolismo , Animais , Clozapina/análogos & derivados , Clozapina/farmacologia , Sinais (Psicologia) , Feminino , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Vias Neurais/fisiologia , Imagem Óptica , Optogenética , Órgão Subfornical/fisiologia
11.
Proc Natl Acad Sci U S A ; 116(27): 13670-13679, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31213533

RESUMO

Leptin informs the brain about sufficiency of fuel stores. When insufficient, leptin levels fall, triggering compensatory increases in appetite. Falling leptin is first sensed by hypothalamic neurons, which then initiate adaptive responses. With regard to hunger, it is thought that leptin-sensing neurons work entirely via circuits within the central nervous system (CNS). Very unexpectedly, however, we now show this is not the case. Instead, stimulation of hunger requires an intervening endocrine step, namely activation of the hypothalamic-pituitary-adrenocortical (HPA) axis. Increased corticosterone then activates AgRP neurons to fully increase hunger. Importantly, this is true for 2 forms of low leptin-induced hunger, fasting and poorly controlled type 1 diabetes. Hypoglycemia, which also stimulates hunger by activating CNS neurons, albeit independently of leptin, similarly recruits and requires this pathway by which HPA axis activity stimulates AgRP neurons. Thus, HPA axis regulation of AgRP neurons is a previously underappreciated step in homeostatic regulation of hunger.


Assuntos
Fome/fisiologia , Sistema Hipotálamo-Hipofisário/fisiologia , Leptina/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia , Hormônio Adrenocorticotrópico/sangue , Animais , Ingestão de Alimentos/fisiologia , Jejum/fisiologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Insulina/farmacologia , Leptina/sangue , Masculino , Mifepristona/farmacologia , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Ratos , Receptores de Glucocorticoides/antagonistas & inibidores
12.
PLoS Biol ; 17(3): e3000172, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30893297

RESUMO

Sleep and wakefulness are greatly influenced by various physiological and psychological factors, but the neuronal elements responsible for organizing sleep-wake behavior in response to these factors are largely unknown. In this study, we report that a subset of neurons in the lateral hypothalamic area (LH) expressing the neuropeptide neurotensin (Nts) is critical for orchestrating sleep-wake responses to acute psychological and physiological challenges or stressors. We show that selective activation of NtsLH neurons with chemogenetic or optogenetic methods elicits rapid transitions from non-rapid eye movement (NREM) sleep to wakefulness and produces sustained arousal, higher locomotor activity (LMA), and hyperthermia, which are commonly observed after acute stress exposure. On the other hand, selective chemogenetic inhibition of NtsLH neurons attenuates the arousal, LMA, and body temperature (Tb) responses to a psychological stress (a novel environment) and augments the responses to a physiological stress (fasting).


Assuntos
Febre/metabolismo , Região Hipotalâmica Lateral/metabolismo , Neurotensina/metabolismo , Animais , Temperatura Corporal , Eletroforese , Técnicas de Genotipagem , Locomoção/fisiologia , Masculino , Camundongos , Neurônios/metabolismo
13.
Neuroscience ; 406: 314-324, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30890480

RESUMO

Neurons containing melanin-concentrating hormone (MCH) in the lateral hypothalamic area (LH) have been shown to promote rapid eye movement sleep (REMs) in mice. However, the downstream neural pathways through which MCH neurons influence REMs remained unclear. Because MCH neurons are considered to be primarily inhibitory, we hypothesized that these neurons inhibit the midbrain 'REMs-suppressing' region consisting of the ventrolateral periaqueductal gray and the lateral pontine tegmentum (vlPAG/LPT) to promote REMs. To test this hypothesis, we optogenetically inhibited MCH terminals in the vlPAG/LPT under baseline conditions as well as with simultaneous chemogenetic activation of MCH soma. We found that inhibition of MCH terminals in the vlPAG/LPT significantly reduced transitions into REMs during spontaneous sleep-wake cycles and prevented the increase in REMs transitions observed after chemogenetic activation of MCH neurons. These results strongly suggest that the vlPAG/LPT may be an essential relay through which MCH neurons modulate REMs.


Assuntos
Movimentos Oculares/fisiologia , Hormônios Hipotalâmicos/metabolismo , Melaninas/metabolismo , Substância Cinzenta Periaquedutal/fisiologia , Hormônios Hipofisários/metabolismo , Sono REM/fisiologia , Animais , Região Hipotalâmica Lateral/fisiologia , Masculino , Camundongos Transgênicos , Vias Neurais/fisiologia , Neurônios/fisiologia , Vigília/fisiologia
14.
Neuron ; 102(3): 653-667.e6, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30879785

RESUMO

SIM1-expressing paraventricular hypothalamus (PVH) neurons are key regulators of energy balance. Within the PVHSIM1 population, melanocortin-4 receptor-expressing (PVHMC4R) neurons are known to regulate satiety and bodyweight, yet they account for only half of PVHSIM1 neuron-mediated regulation. Here we report that PVH prodynorphin-expressing (PVHPDYN) neurons, which notably lack MC4Rs, function independently and additively with PVHMC4R neurons to account for the totality of PVHSIM1 neuron-mediated satiety. Moreover, PVHPDYN neurons are necessary for prevention of obesity in an independent but equipotent manner to PVHMC4R neurons. While PVHPDYN and PVHMC4R neurons both project to the parabrachial complex (PB), they synaptically engage distinct efferent nodes, the pre-locus coeruleus (pLC), and central lateral parabrachial nucleus (cLPBN), respectively. PB-projecting PVHPDYN neurons, like PVHMC4R neurons, receive input from interoceptive ARCAgRP neurons, respond to caloric state, and are sufficient and necessary to control food intake. This expands the CNS satiety circuitry to include two non-overlapping PVH to hindbrain circuits.


Assuntos
Comportamento Alimentar/fisiologia , Neurônios/citologia , Obesidade/fisiopatologia , Núcleo Hipotalâmico Paraventricular/citologia , Resposta de Saciedade/fisiologia , Proteína Relacionada com Agouti/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Metabolismo Energético , Encefalinas/metabolismo , Locus Cerúleo/citologia , Locus Cerúleo/metabolismo , Locus Cerúleo/fisiologia , Camundongos , Neurônios/metabolismo , Neurônios/fisiologia , Núcleos Parabraquiais/citologia , Núcleos Parabraquiais/metabolismo , Núcleos Parabraquiais/fisiologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiologia , Precursores de Proteínas/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Proteínas Repressoras/metabolismo
15.
Nat Commun ; 9(1): 4129, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297727

RESUMO

The preoptic area (POA) is necessary for sleep, but the fundamental POA circuits have remained elusive. Previous studies showed that galanin (GAL)- and GABA-producing neurons in the ventrolateral preoptic nucleus (VLPO) express cFos after periods of increased sleep and innervate key wake-promoting regions. Although lesions in this region can produce insomnia, high frequency photostimulation of the POAGAL neurons was shown to paradoxically cause waking, not sleep. Here we report that photostimulation of VLPOGAL neurons in mice promotes sleep with low frequency stimulation (1-4 Hz), but causes conduction block and waking at frequencies above 8 Hz. Further, optogenetic inhibition reduces sleep. Chemogenetic activation of VLPOGAL neurons confirms the increase in sleep, and also reduces body temperature. In addition, chemogenetic activation of VLPOGAL neurons induces short-latency sleep in an animal model of insomnia. Collectively, these findings establish a causal role of VLPOGAL neurons in both sleep induction and heat loss.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Galanina/metabolismo , Neurônios/metabolismo , Área Pré-Óptica/metabolismo , Sono/fisiologia , Animais , Regulação da Temperatura Corporal/genética , Eletroencefalografia , Eletromiografia , Galanina/genética , Perfilação da Expressão Gênica , Masculino , Camundongos Transgênicos , Área Pré-Óptica/citologia , Sono/genética , Distúrbios do Início e da Manutenção do Sono/genética , Distúrbios do Início e da Manutenção do Sono/metabolismo , Distúrbios do Início e da Manutenção do Sono/fisiopatologia
16.
Elife ; 72018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29905528

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP, Adcyap1) is a neuromodulator implicated in anxiety, metabolism and reproductive behavior. PACAP global knockout mice have decreased fertility and PACAP modulates LH release. However, its source and role at the hypothalamic level remain unknown. We demonstrate that PACAP-expressing neurons of the ventral premamillary nucleus of the hypothalamus (PMVPACAP) project to, and make direct contact with, kisspeptin neurons in the arcuate and AVPV/PeN nuclei and a subset of these neurons respond to PACAP exposure. Targeted deletion of PACAP from the PMV through stereotaxic virally mediated cre- injection or genetic cross to LepR-i-cre mice with Adcyap1fl/fl mice led to delayed puberty onset and impaired reproductive function in female, but not male, mice. We propose a new role for PACAP-expressing neurons in the PMV in the relay of nutritional state information to regulate GnRH release by modulating the activity of kisspeptin neurons, thereby regulating reproduction in female mice.


Assuntos
Neurônios/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Reprodução/fisiologia , Núcleo Hipotalâmico Ventromedial/metabolismo , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/citologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Reprodução/genética , Fatores Sexuais , Maturidade Sexual/genética , Núcleo Hipotalâmico Ventromedial/citologia
17.
Neuron ; 96(1): 190-206.e7, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28957668

RESUMO

Sodium deficiency increases angiotensin II (ATII) and aldosterone, which synergistically stimulate sodium retention and consumption. Recently, ATII-responsive neurons in the subfornical organ (SFO) and aldosterone-sensitive neurons in the nucleus of the solitary tract (NTSHSD2 neurons) were shown to drive sodium appetite. Here we investigate the basis for NTSHSD2 neuron activation, identify the circuit by which NTSHSD2 neurons drive appetite, and uncover an interaction between the NTSHSD2 circuit and ATII signaling. NTSHSD2 neurons respond to sodium deficiency with spontaneous pacemaker-like activity-the consequence of "cardiac" HCN and Nav1.5 channels. Remarkably, NTSHSD2 neurons are necessary for sodium appetite, and with concurrent ATII signaling their activity is sufficient to produce rapid consumption. Importantly, NTSHSD2 neurons stimulate appetite via projections to the vlBNST, which is also the effector site for ATII-responsive SFO neurons. The interaction between angiotensin signaling and NTSHSD2 neurons provides a neuronal context for the long-standing "synergy hypothesis" of sodium appetite regulation.


Assuntos
Aldosterona/fisiologia , Angiotensina II/fisiologia , Relógios Biológicos/fisiologia , Neurônios/fisiologia , Transdução de Sinais , Sódio/fisiologia , Núcleo Solitário/fisiologia , Animais , Ingestão de Alimentos/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.5/fisiologia , Vias Neurais/fisiologia , Núcleos Septais/fisiologia , Sódio/deficiência
19.
Nature ; 546(7660): 611-616, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28614299

RESUMO

Physiological needs bias perception and attention to relevant sensory cues. This process is 'hijacked' by drug addiction, causing cue-induced cravings and relapse. Similarly, its dysregulation contributes to failed diets, obesity, and eating disorders. Neuroimaging studies in humans have implicated insular cortex in these phenomena. However, it remains unclear how 'cognitive' cortical representations of motivationally relevant cues are biased by subcortical circuits that drive specific motivational states. Here we develop a microprism-based cellular imaging approach to monitor visual cue responses in the insular cortex of behaving mice across hunger states. Insular cortex neurons demonstrate food-cue-biased responses that are abolished during satiety. Unexpectedly, while multiple satiety-related visceral signals converge in insular cortex, chemogenetic activation of hypothalamic 'hunger neurons' (expressing agouti-related peptide (AgRP)) bypasses these signals to restore hunger-like response patterns in insular cortex. Circuit mapping and pathway-specific manipulations uncover a pathway from AgRP neurons to insular cortex via the paraventricular thalamus and basolateral amygdala. These results reveal a neural basis for state-specific biased processing of motivationally relevant cues.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Alimentos , Homeostase , Vias Neurais , Estimulação Luminosa , Proteína Relacionada com Agouti/metabolismo , Animais , Sinais (Psicologia) , Fome/fisiologia , Hipotálamo/citologia , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Resposta de Saciedade/fisiologia
20.
Nat Neurosci ; 20(1): 42-51, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27869800

RESUMO

Arcuate nucleus (ARC) neurons sense the fed or fasted state and regulate hunger. Agouti-related protein (AgRP) neurons in the ARC (ARCAgRP neurons) are stimulated by fasting and, once activated, they rapidly (within minutes) drive hunger. Pro-opiomelanocortin (ARCPOMC) neurons are viewed as the counterpoint to ARCAgRP neurons. They are regulated in an opposite fashion and decrease hunger. However, unlike ARCAgRP neurons, ARCPOMC neurons are extremely slow in affecting hunger (many hours). Thus, a temporally analogous, rapid ARC satiety pathway does not exist or is presently unidentified. Here we show that glutamate-releasing ARC neurons expressing oxytocin receptor, unlike ARCPOMC neurons, rapidly cause satiety when chemo- or optogenetically manipulated. These glutamatergic ARC projections synaptically converge with GABAergic ARCAgRP projections on melanocortin-4 receptor (MC4R)-expressing satiety neurons in the paraventricular hypothalamus (PVHMC4R neurons). Transmission across the ARCGlutamatergic→PVHMC4R synapse is potentiated by the ARCPOMC neuron-derived MC4R agonist, α-melanocyte stimulating hormone (α-MSH). This excitatory ARC→PVH satiety circuit, and its modulation by α-MSH, provides insight into regulation of hunger and satiety.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Metabolismo Energético/fisiologia , Rede Nervosa/fisiologia , Neurônios/metabolismo , Potenciais Sinápticos/fisiologia , alfa-MSH/metabolismo , Animais , Fome/fisiologia , Hipotálamo/metabolismo , Camundongos Transgênicos , Pró-Opiomelanocortina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...