Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagn Microbiol Infect Dis ; 110(1): 116442, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39024935

RESUMO

BACKGROUND: Keratomycosis is a form of infectious keratitis, an infection of the cornea, which is caused by fungi. This disease is a leading cause of ocular morbidity globally with at least 60 % of the affected individuals becoming monocularly blind. OBJECTIVE: This bibliometric analysis aimed to comprehensively assess the existing body of literature, providing insights of the evolution of keratomycosis research by identifying key themes and research gaps. METHODS: This work used the modeling method Latent Dirichlet Allocation (LDA) to identify and interpret scientific information on topics concerning existing categories in a set of documents. The HJ-Biplot method was also used to determine the relationship between the analyzed topics, taking into consideration the years under study. RESULTS: This bibliometric analysis was performed on a total of 2,599 scientific articles published between 1992 and 2022. The five leading countries with more scientific production and citations on keratomycosis were The United States of America, followed by India, China, United Kingdom and Australia. The top five topics studied were Case Reports and Corneal Infections, which exhibited a decreasing trend; followed by Penetrating Keratoplasty and Corneal Surgery, Ocular Effects of Antifungal Drugs, Gene Expression and Inflammatory Response in the Cornea and Patient Data which have been increasing throughout the years. However Filamentous Fungi and Specific Pathogens, and Antifungal Therapies research has been decreasing in trend. CONCLUSION: Additional investigation into innovative antifungal drug therapies is crucial for proactively tackling the potential future resistance to antifungal agents in scientific writing.

2.
Diagn Microbiol Infect Dis ; 110(1): 116440, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39018933

RESUMO

This study was designed to investigate the expression of HPV16 L1-protein in biopsies of oral mucosa samples. The expression of HPV16 L1 protein was investigated in biopsies taken from oral mucosa from patients who required pathological diagnosis of oral lesions. Seventy-two samples were incubated with anti-L1 protein monoclonal antibodies and protein detection was revealed with diaminobenzidine. Expression of L1 protein was performed by a pathologist blinded for tissue diagnosis under light microscopy. Most of the lesions of oral mucosa were present in lining mucosa (75 %) and the most frequent lesion were mucocele (n = 17, 23.6 %), epithelial hyperplasia (n = 6, 8.33 %), fibroma (n = 5, 6.9 %) and inflammatory hyperplasia (n = 5, 6.9 %). L1 protein expression was observed only in five (6.9 %) samples (two squamous cell carcinomas, two epithelial hyperplasia, and one gingival hyperplasia). We concluded that L1 expression in oral biopsies presented a low frequency in oral mucosal biopsies samples.

3.
Curr Microbiol ; 81(8): 237, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907801

RESUMO

Toxic cyanobacterial blooms in various water bodies have been given much attention nowadays as they release hazardous substances in the surrounding areas. These toxic planktonic cyanobacteria in shrimp ponds greatly affect the survival of shrimps. Ecuador is the second highest shrimp producing country in the Americas after Brazil; and the shrimp-based economy is under threat due to toxic cyanobacterial blooms in Ecuador shrimp ponds. This study investigated the abundance of different cyanobacteria in the shrimp ponds at the Chone and Jama rivers (in Manabi province) at Ecuadorian pacific coast, focusing on different environmental factors, such as temperature, pH, salinity, and light. Temperature and pH were identified as key factors in influencing the abundance of cyanobacteria, with a significant positive correlation between Raphidiopsis raciborskii and pH. The highest and lowest abundance of cyanobacteria found during the dry season in the shrimp ponds near the Chone and Jama rivers were > 3 × 106 and 1 × 106 Cell.m-3, respectively. The Shannon-Wiener Diversity Index fluctuated between 0.41-1.15 and 0.31-1.15 for shrimp ponds of Chone and Jama rivers, respectively. This variation was linked to changes in salinity and the presence of harmful algal blooms, highlighting the importance of continuous monitoring. Additionally, the study areas showed eutrophic conditions with low diversity, underlining the need for additional spatiotemporal studies and expanded research in both rivers, to better understand these complex phenomena. The findings underscore the importance of continuous monitoring and expanded research in cyanobacteria ecology, with implications for public health and aquatic resource management.


Assuntos
Aquicultura , Cianobactérias , Lagoas , Equador , Cianobactérias/classificação , Cianobactérias/isolamento & purificação , Animais , Lagoas/microbiologia , Humanos , Penaeidae/microbiologia , Salinidade , Proliferação Nociva de Algas , Estações do Ano , Temperatura
4.
Artigo em Inglês | MEDLINE | ID: mdl-38771555

RESUMO

Microbial colonization on the titanium condenser material (TCM) used in the cooling system leads to biofouling and corrosion and influences the water supply. The primary investigation of the titanium condenser was infrequently studied on characterizing biofilm-forming bacterial communities. Different treatment methods like electropotential charge, ultrasonication, and copper coating of titanium condenser material may influence the microbial population over the surface of the titanium condensers. The present study aimed to catalog the primary colonizers and the effect of different treatment methods on the microbial community. CFU (1.7 × 109 CFU/mL) and ATP count (< 5000 × 10-7 relative luminescence units) showed a minimal microbial population in copper-coated surface biofilm as compared with the other treatments. Live and dead cell result also showed consistency with colony count. The biofilm sample on the copper-coated surface showed an increased dead cell count and decreased live cells. In the metagenomic approach, the microbiome coverage was 10.06 Mb in samples derived from copper-coated TCM than in other treated samples (electropotential charge-17.94 Mb; ultrasonication-20.01 Mb), including control (10.18 Mb). Firmicutes preponderate the communities in the biofilm samples, and Proteobacteria stand next in the population in all the treated condenser materials. At the genus level, Lactobacillaceae and Azospirillaceae dominated the biofilm community. The metagenome data suggested that the attached community is different from those biofilm samples based on the environment that influences the bacterial community. The outcome of the present study depicts that copper coating was effective against biofouling and corrosion resistance of titanium condenser material for designing long-term durability.

5.
Curr Microbiol ; 81(6): 140, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622481

RESUMO

Environmental problems are caused by the disposal of agrowastes in developing countries. It is imperative to convert such wastes into useful products, which require enzymes such as ß-glucosidase. ß-Glucosidase has variety of applications in biotechnology including food, textile, detergents, pulp and paper, pharmaceutical and biofuel industries. ß-Glucosidase production was performed using the locally isolated Aspergillus protuberus using best growth circumstances on rice husk in solid-state fermentation (SSF). Leaching of ß-glucosidase from fermented rice husk with number of solvents to evaluate their extraction efficacy. Among the different solvents examined, acetate buffer (0.02 M, pH 5.0) proved to be the best solvent. The subsequent parameters were optimized with acetate buffer. Two washes with acetate buffer each by shaking (30 min) in a ratio of 1 g of rice husk: 5 ml of acetate buffer together attained maximum recovery of ß-glucosidase with 41.95 U/g of rice husk.


Assuntos
Aspergillus , Oryza , beta-Glucosidase , Fermentação , Solventes , Acetatos
6.
Infect Prev Pract ; 6(1): 100346, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38380354

RESUMO

Background: Patients admitted to the Intensive Care Unit (ICU) are at greater risk of developing nosocomial infections due to their investigations, treatment and changes in the immune system. One of the most prevalent nosocomial infections is respiratory tract infection, such as hospital acquired pneumonia and ventilator-associated pneumonia (VAP). The bacteria commonly found in the oral cavity in the hospital environment are Streptococcus viridians, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus spp., and Klebsiella pneumoniae. There is a need to test and define appropriate standard protocols for oral hygiene in patients undergoing mechanical ventilation in ICUs through the intervention of a dental specialist, preventing the proliferation of microorganisms into the respiratory tract, thus reducing hospitalization time, the use of antibiotics, and increased morbidity/mortality. Objective: This study aimed to evaluate the effectiveness of dental brushing in the reduction of the pathogenic buccal microbiota associated with mechanical ventilation in patients admitted to the Evangelical Hospital from Londrina, Paraná, Brazil. Methodology: The sample consisted of 90 patients (of both sexes), mean age of 65 years, under mechanical ventilation by orotracheal tube and tracheostomized patients, without suspected or confirmed diagnosis of pneumonia. Patients were randomized ∗∗∗. Results: Results showed that oral hygiene using a toothbrush by suction, with chlorhexidine gel 0.12% (Group B), was more effective than conventional hygiene using gauze soaked with chlorhexidine 0.12% (Group A) in reducing pathogenic buccal microbiota. Conclusions: There was a reduction of the pathogenic buccal microbiota in mechanically ventilated patients receiving oral hygiene using a toothbrush by suction with chlorhexidine gel 0.12% (Group B).

7.
Res Microbiol ; 175(3): 104172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38043671

RESUMO

Bacteria are ubiquitous prokaryotes. They are involved in biofilm formation and also have the ability to produce anti-biofilm products for biofilm mitigation. This special issue entitled: "Biofilms- community structure, applications and mitigation" of the journal Research in Microbiology was designed to discuss the flexibility of bacterial biofilms and their products under particular circumstances. Given that quorum sensing (QS) controls biofilm growth in some situations, especially for pathogenic bacteria antibiotic evading strategies. In Gram-negative bacteria, N-acyl homoserine lactones are the major quorum sensing signaling molecules. Another approach to prevent bacterial biofilm formation may be to inhibit the QS-regulated activities using quorum quenching (QQ). In this context, QS inhibitors and QS enzymes are important because they, respectively, interfere with signal creation, perception, or degradation and chemical modification. There have been numerous reports of QQ enzymes from bacteria. Treatment failure and recurrent staphylococcal infections are also brought on by biofilm development, which boosts an organism's ability to withstand antibiotics and is thought to be a virulence factor in patients. However, polyphenol quercetin antibiofilm activity is naturally available against drug-resistant Staphylococcus aureus.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Humanos , Biofilmes , Bactérias/metabolismo , Percepção de Quorum , Bactérias Gram-Negativas , Antibacterianos/farmacologia , Antibacterianos/metabolismo
8.
J Environ Manage ; 348: 119364, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866190

RESUMO

A steep rise in global plastic production and significant discharge of plastic waste are expected in the near future. Plastics pose a threat to the ecosystem and human health through the generation of particulate plastics that act as carriers for other emerging contaminants, and the release of toxic chemical additives. Since plastic additives are not covalently bound, they can freely leach into the environment. Due to their occurrence in various environmental settings, the additives exert significant ecotoxicity. However, only 25% of plastic additives have been characterized for their potential ecological concern. Despite global market statistics highlighting the substantial environmental burden caused by the unrestricted production and use of plastic additives, information on their ecotoxicity remains incomplete. By focusing on the ecological impacts of plastic additives, the present review aims to provide detailed insights into the following aspects: (i) diversity and occurrence in the environment, (ii) leaching from plastic materials, (iii) trophic transfer, (iv) human exposure, (v) risks to ecosystem and human health, and (vi) legal guidelines and mitigation strategies. These insights are of immense value in restricting the use of toxic additives, searching for eco-friendly alternatives, and establishing or revising guidelines on plastic additives by global health and environmental agencies.


Assuntos
Plásticos , Poluentes Químicos da Água , Humanos , Plásticos/química , Ecossistema , Meio Ambiente , Poluentes Químicos da Água/análise , Monitoramento Ambiental
9.
Artigo em Inglês | MEDLINE | ID: mdl-37676559

RESUMO

Petroleum contamination constitutes a frequent incidence in various petroleum depots in Nigeria. In this study, the polycyclic aromatic hydrocarbons (PAHs) present in soil and water in communities around Petroleum Products Marketing Company (PPMC) Suleja, Nigeria, were evaluated and degraded using indigenous microorganisms. The samples sites were divided into 7 plots from where samples of water and soil were obtained: one within the PPMC depot, five from communities surrounding the depot, and the control 93,000 km from the depot. The microbial counts were determined using spread plate inoculation technique on minimal salt media. The microbial isolates were characterized and identified based on their cultural, biochemical, and molecular characteristics. The potential of the microbial isolates to utilize 0.05 mL of diesel, kerosene, engine oil, and crude oil was determined in a Bushnell Haas Broth, and the biodegradation was determined by total viable cell counts and spectrophotometry. The ability of the isolates to mineralize PAHs was also evaluated in a minimum salt media. The bacterial isolates were species of Streptococcus, Pseudomonas, Staphylococcus, Proteus, Escherichia, and Bacillus, while species of Penicillium, Aspergillus, Mucor, and Rhizopus were isolated among the fungi. Aspergillus niger strain ATCC 1015 and Bacillus thuringiensis strain M43 showed high capacity to utilize the 16 priority PAHs. The pahE1 gene was used by Bacillus thuringiensis, Pseudomonas aeruginosa and A. niger, while Penicillium notatum used pahE2 gene for the degradation of the PAH. The current study identified microbial isolates that can utilize priority PAHs, making them beneficial for oil spill bioremediation in tropical environments.

10.
Int J Biol Macromol ; 251: 126379, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37595699

RESUMO

In algae-bacteria symbiotic wastewater treatment, the excellent settling performance of algae-bacteria aggregates is critical for biomass separation and recovery. Here, the composition of extracellular polymeric substances (EPS), microbial profiles, and functional genes of algae-bacteria aggregates were investigated at different solid retention times (SRTs) (10, 20, and 40 d) during partial nitrification in photo sequencing bioreactors (PSBRs). Results showed that SRTs greatly influenced the nitrogen transformation and the formation and morphological structure of algae-bacteria aggregates. The highest nitrite accumulation, the largest particle size (~1.54 mm) and the best settling performance were observed for the algae-bacteria aggregates in the PSBR with an SRT of 10 d, where the abundant occurrence of filamentous cyanobacteria with the highest ratio of chlorophyll a/b and the lowest EPS amount with the highest protein-to-polysaccharide ratio were observed. In particular, the EPS at 10 d of SRT contained a higher amount of protein-related hydrophobic groups and a lower ratio of α-helix/(ß-sheet + random coil), indicating a looser protein structure, which might facilitate the formation and stabilization of algae-bacteria aggregates. Moreover, algal-bacterial aggregation greatly depended on the composition and evolution of filamentous cyanobacteria (unclassified _o__Oscillatoriales and Phormidium accounted for 56.29 % of the identified algae at SRT 10 d). The metagenomic analysis further revealed that functional genes related to amino acid metabolism (e.g., genes of phenylalanine, tyrosine, and tryptophan biosynthesis) were expressed at high levels within 10 d of SRT. Overall, this study demonstrates the influence of EPS structures and filamentous cyanobacteria on algae-bacteria aggregation and reveals the biological mechanisms driving photogranule structure and function.

11.
Foods ; 12(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569226

RESUMO

Listeria monocytogenes is a foodborne pathogen that causes listeriosis and can be a problem in areas where meat products are sold at unregulated storage temperatures. In this work, the prevalence of L. monocytogenes was determined in the five most widely traded meat products in the province of Quevedo (Ecuador): bacon, "chorizo paisa", grilled hamburger meat, mortadella, and salami. A total of 1000 samples of these products were analyzed in two seasons of the year (dry season/rainy season). All L. monocytogenes isolates were confirmed by PCR with primers designed for the iap gene. Furthermore, the positive samples were quantified for L. monocytogenes. Of the 1000 meat products analyzed, 163 were positive for L. monocytogenes (16.3%). The prevalence of L. monocytogenes in the two seasons in different meat products was as follows: 22.5% in mortadella, 19% in hamburger meat, 15% in bacon, 14.5% in chorizo paisa and 10.5% in salami. In addition, the concentration of L. monocytogenes in most of the positive samples was in the range of 4-6 log CFU/g or even higher. The results show the need for improvements in the hygienic measures and meat storage temperatures in Quevedo (Ecuador) to avoid risks of foodborne listeriosis.

12.
Curr Microbiol ; 80(9): 277, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37434070

RESUMO

The presence of small amount of soluble forms of Phosphorus (P), Potassium (K) and Zinc (Zn) in most soils is one of the limiting factors for agronomic crop production. The current study focuses on Macrotyloma uniflorum (horse gram or gahat), the most commonly cultivated crop in Uttarakhand. The current initiative and study were started, because there is a little information available on the impact of co-inoculation of beneficial fungi on crops in agricultural fields. Aspergillus niger K7 and Penicillium chrysogenum K4 were isolated and selected for the study on the basis of in vitro P, K and Zn-solubilizing activity. The solubilizing efficiency of K4 strain was 140% and K7 was 173.9% for P. However, the solubilizing efficiencies of K4 and K7 were 160% and 138.46% for Zn and 160% and 466% for K, respectively. The field trials were performed for two consecutive years, and growth and yield related parameters were measured for evaluation of the effect of P, K and Zn-solubilizing fungal strains on the crop. All the treatments showed a significant (P < 0.05) increase in growth and yield of M. uniflorum plants over uninoculated control; however, the best treatment was found to be soil inoculated with P. chrysogenum K4 + A. niger K7 in which the yield was enhanced by 71% over control. Thus, the co-inoculation of K4 and K7 strains showed a great potential to improve the growth and yield of plants. Both the fungal strains simultaneously solubilized three important nutritional elements in soil, which is a rare trait. Moreover, the capacity of these fungal strains to enhance the plant root nodulation and microbial count in soil makes the co-inoculation practice quite beneficial for sustainable agriculture.


Assuntos
Asteraceae , Fabaceae , Plantas Medicinais , Agricultura , Aspergillus niger
13.
Sci Total Environ ; 877: 162911, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36933736

RESUMO

Microbial community and interaction play crucial roles in ecological functions of soil including nutrient cycling carbon storage, and water maintenance etc. Numerous studies have shown that the application of fertilizers alters bacterial diversity; However, it remains unknown whether and how the continuous application of biogas slurry from anaerobic digestion affects the spatiotemporal heterogeneity of soil layers, complexity and stability of microbial networks, and functions related to C and N cycling. Here, we investigated the bacterial taxa of purple soils treated with swine biogas slurry for four different periods (0, 1, 3 and 8 years) and five different soil depths (20, 40, 60, 80 and 100 cm). The results showed that the application period of biogas slurry and soil depth were two powerful drivers of bacterial diversity and communities. Biogas slurry input resulted in marked changes in the bacterial diversity and composition at the soil depths of 0-60 cm. The relative abundances of Acidobacteriota, Myxococcot, and Nitrospirota decreased, while Actinobacteria, Chloroflexi, and Gemmatimonadota increased with repeated biogas slurry input. The decreasing complexity and stability of the bacterial network with decreasing nodes, links, robustness, and cohesions were found with increasing years of biogas slurry application, suggesting that the bacterial network of soils treated by the biogas slurry became more vulnerability compared with the control. Also, the linkages between the keystone taxa and soil properties were weakened after biogas slurry input, leading to the cooccurrence patterns being less affected by the keystones in the high level of nutrients. Metagenomic analysis confirmed that biogas slurry input increased the relative abundance of liable-C degradation and denitrification genes, which could highly impact the network properties. Overall, our study could give comprehensive understandings on the impacts of biogas slurry amendment on soils, which could be useful for maintaining sustainable agriculture and soil health with liquid fertilization.


Assuntos
Biocombustíveis , Solo , Animais , Suínos , Metagenômica , Bactérias/genética , Agricultura , Fertilizantes , Microbiologia do Solo
14.
Environ Res ; 219: 115152, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36572331

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are compounds used since 1940 in various formulations in the industrial and consumer sectors due to their high chemical and thermal stability. In recent years, PFASs have caused global concern due to their presence in different water and soil matrices, which threatens the environment and human health. These compounds have been reported to be linked to the development of serious human diseases, including but not limited to cancer. For this reason, PFASs have been considered as persistent organic compounds (COPs) and contaminants of emerging concern (CECs). Therefore, this work aims to present the advances in remediation of PFASs-contaminated soil and water by addressing the current literature. The performance and characteristics of each technique were addressed deeply in this work. The reviewed literature found that PFASs elimination studies in soil and water were carried out at a laboratory and pilot-scale in some cases. It was found that ball milling, chemical oxidation and thermal desorption are the most efficient techniques for the removal of PFASs in soils, however, phyto-microbial remediation is under study, which claims to be a promising technique. For the remediation of PFASs-contaminated water, the processes of electrocoagulation, membrane filtration, ozofractionation, catalysis, oxidation reactions - reduction, thermolysis and destructive treatments with plasma have presented the best results. It is noteworthy that hybrid treatments have also proved to be efficient techniques in the removal of these contaminants from soil and water matrices. Therefore, the improvisation and implication of existing techniques on a field-scale are greatly warranted to corroborate the yields obtained on a pilot- and laboratory-scale.


Assuntos
Fluorocarbonos , Poluentes do Solo , Poluentes Químicos da Água , Humanos , Fluorocarbonos/análise , Solo/química , Poluentes Químicos da Água/análise , Poluição da Água , Água
15.
Appl Biochem Biotechnol ; 195(9): 5643-5668, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36418712

RESUMO

Biological fouling as termed biofouling is caused by varied living organisms and is difficult to eliminate from the environment thus becoming a major issue during membrane bioreactors. Biofouling in membrane bioreactors (MBRs) is a crucial problem in increasing liquid pressure due to reduced pore diameter, clogging of the membrane pores, and alteration of the chemical composition of the water which greatly limits the growth of MBRs. Thus, membrane biofouling and/or microbial biofilms is a hot research topic to improve the market competitiveness of the MBR technology. Though several antibiofouling strategies (addition of bioflocculant or sponge into MBRs) came to light, biological approaches are sustainable and more practicable. Among the biological approaches, quorum sensing-based biofouling control (so-called quorum quenching) is an interesting and promising tool in combating biofouling issues in the MBRs. Several review articles have been published in the area of membrane biofouling and mitigation approaches. However, there is no single source of information about biofouling and/or biofilm formation in different environmental settings and respective problems, antibiofilm strategies and current status, quorum quenching, and its futurity. Thus, the objectives of the present review were to provide latest insights on mechanism of membrane biofouling, quorum sensing molecules, biofilm-associated problems in different environmental setting and antibiofilm strategies, special emphasis on quorum quenching, and its futurity in the biofilm/biofouling control. We believe that these insights greatly help in the better understanding of biofouling and aid in the development of sustainable antibiofouling strategies.


Assuntos
Incrustação Biológica , Incrustação Biológica/prevenção & controle , Biofilmes , Percepção de Quorum , Reatores Biológicos , Membranas Artificiais
16.
Environ Res ; 217: 114776, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403656

RESUMO

The excessive contamination of drinking water sources by pesticides has a pernicious impact on human health and the environment since only 0.1% of pesticides is utilized effectively to control the and the rest is deposited in the environment. Filtration by polymeric membranes has become a promising technique to deal with this problem; however, the scientific community, in the need to find better pesticide retention results, has begun to meddle in the functionalization of polymeric membranes. Given the great variety of membrane, polymer, and nanomaterial synthesis methods present in the market, the possibilities of obtaining membranes that adjust to different variables and characteristics related to a certain pesticide are relatively extensive, so it is expected that this technology will represent one of the main pesticide removal strategies in the future. In this direction, this review focused on, - the main characteristics of the nanomaterials and their impact on pristine polymeric membranes; - the removal performance of functionalized membranes; and - the main mechanisms by which membranes can retain pesticides. Based on these insights, the functionalized polymeric membranes can be considered as a promising technology in the removal of pesticides since the removal performance of this technology against pesticide showed a significant increase. Obtaining membranes that adjust to different variables and characteristics related to a certain pesticide are relatively extensive, so it is expected that functionalized membrane technology will represent one of the main pesticide removal strategies in the future.


Assuntos
Nanoestruturas , Praguicidas , Humanos , Praguicidas/análise , Filtração , Polímeros , Tecnologia
17.
Environ Sci Process Impacts ; 24(12): 2217-2236, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36444949

RESUMO

Certain chemicals/materials that are contaminants of emerging concern (CECs) have been widely detected in water bodies and terrestrial systems worldwide while other CECs occur at undetectable concentrations. The primary sources of CECs in farmlands are agricultural inputs, such as wastewater, biosolids, sewage sludge, and agricultural mulching films. The percent increase in cropland area during 1950-2016 was 30 and the rise in land use for food crops during 1960-2018 was 100-500%, implying that there could be a significant CEC burden in farmlands in the future. In fact, the alarming concentrations (µg kg-1) of certain CECs such as PBDEs, PAEs, and PFOS that occur in farmlands are 383, 35 400 and 483, respectively. Also, metal nanoparticles are reported even at the mg kg-1 level. Chronic root accumulation followed by translocation of CECs into plants results in their detectable concentrations in the final plant produce. Thus, there is a continuous flow of CECs from farmlands to agricultural produce, causing a serious threat to the terrestrial food chain. Consequently, CECs find their way to the human body directly through CEC-laden plant produce or indirectly via the meat of grazing animals. Thus, human health could be at the most critical risk since several CECs have been shown to cause cancers, disruption of endocrine and cognitive systems, maternal-foetal transfer, neurotoxicity, and genotoxicity. Overall, this comprehensive review provides updated information on contamination of chemicals/materials of concern in farmlands globally, sources for their entry, uptake by crop plants, and their likely impact on the terrestrial food chain and human health.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Animais , Humanos , Poluentes Químicos da Água/análise , Fazendas , Águas Residuárias , Esgotos
18.
RSC Adv ; 12(20): 12396-12415, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35480371

RESUMO

Soil pollution by the contaminants of emerging concern (CECs) or emerging contaminants deserves attention worldwide because of their toxic health effects and the need for developing regulatory guidelines. Though the global soil burden by certain CECs is in several metric tons, the source-tracking of these contaminants in soil environments is difficult due to heterogeneity of the medium and complexities associated with the interactive mechanisms. Most CECs have higher affinities towards solid matrices for adsorption. The CECs alter not only soil functionalities but also those of plants and animals. Their toxicities are at nmol to µmol levels in cell cultures and test animals. These contaminants have a higher propensity in accumulating mostly in root-based food crops, threatening human health. Poor understanding on the fate of certain CECs in anaerobic environments and their transfer pathways in the food web limits the development of effective bioremediation strategies and restoration of the contaminated soils and endorsement of global regulatory efforts. Despite their proven toxicities to the biotic components, there are no environmental laws or guidelines for certain CECs. Moreover, the information available on the impact of soil pollution with CECs on human health is fragmentary. Therefore, we provide here a comprehensive account on five significantly important CECs, viz., (i) PFAS, (ii) micro/nanoplastics, (iii) additives (biphenyls, phthalates), (iv) novel flame retardants, and (v) nanoparticles. The emphasis is on (a) degree of soil burden of CECs and the consequences, (b) endocrine disruption and immunotoxicity, (c) genotoxicity and carcinogenicity, and (d) soil health guidelines.

19.
Sci Total Environ ; 769: 145079, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33482543

RESUMO

Organic farming for higher ecological and human health benefits has been adopted in about 186 countries, covering a total area of 71.5 Mha worldwide. Because of the associated practices, the flows of several environmental pollutants into the organic products threaten food safety and human health. The contaminants that occur at higher concentrations in organic produce include persistent organic pollutants (61.3-436.9 ng g-1 lamb meat, and 0.28 pg g-1-2.75 ng g-1 bovine meat), heavy metals (0.5-33.0 mg kg-1 lettuce), organochlorine pesticides (11-199 µg g-1 carrots), cyclodienes, hexachlorocyclohexanes, hexabromocyclododecane (2-3 times higher than in conventionally produced porcine meat), hexachlorobenzene (1.38-14.49 ng g-1 fat in milk), and non-brominated flame retardants (1.3-3.2 times higher than in conventional produce of greenhouse-grown tomato and cucumber). Moreover, some pollutants like per- and polyfluoroalkyl substances with a longer half-life (1.50-9.10 yrs) are reported to occur in several organic products. In fact, several legacy persistent organic pollutants are known for their significant trophic magnification in an urban terrestrial ecosystem. In addition, many plant functionalities are adversely affected in organic farming. Therefore, the long-term usage of organic products containing such pollutants poses a significant threat to human health. The major limitation in organic livestock production is the severe shortage of organic feed. Several variable standards and technical regulations set by the government and private agencies are the major obstacles in the global marketing of organic products. The present review critically addresses the impact of organic farming on hidden risks due to the use of composts as the amendment resources that enhance the phytoaccumulation and trophic transfer of pollutants, the functional diversity of the ecosystems, and poor harmonization among the policies and regulations in different countries for organic farming. The future directions of research have been suggested to mitigate unintended flows of pollutants into the organic products.


Assuntos
Ecossistema , Retardadores de Chama , Animais , Bovinos , Monitoramento Ambiental , Retardadores de Chama/análise , Inocuidade dos Alimentos , Humanos , Agricultura Orgânica , Suínos
20.
Environ Sci Process Impacts ; 22(9): 1809-1827, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32760963

RESUMO

Regulations and the voluntary activities of manufacturers have led to a market shift in the use of flame retardants (FRs). Accordingly, organophosphate ester flame retardants (OPFRs) have emerged as a replacement for polybrominated diphenyl ethers (PBDEs). One of the widely used OPFRs is tris(2-chloroethyl) phosphate (TCEP), the considerable usage of which has reached 1.0 Mt globally. High concentrations of TCEP in indoor dust (∼2.0 × 105 ng g-1), its detection in nearly all foodstuffs (max. concentration of ∼30-300 ng g-1 or ng L-1), human body burden, and toxicological properties as revealed by meta-analysis make TCEP hard to distinguish from traditional FRs, and this situation requires researchers to rethink whether or not TCEP is an appropriate choice as a new FR. However, there are many unresolved issues, which may impede global health agencies in framing stringent regulations and manufacturers considering the meticulous use of TCEP. Therefore, the aim of the present review is to highlight the factors that influence TCEP emissions from its sources, its bioaccessibility, threat of trophic transfer, and toxicogenomics in order to provide better insight into its emergence as an FR. Finally, remediation strategies for dealing with TCEP emissions, and future research directions are addressed.


Assuntos
Poluentes Atmosféricos/análise , Retardadores de Chama/análise , Organofosfatos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , Monitoramento Ambiental , Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/análise , Humanos , Organofosfatos/toxicidade , Fosfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...