Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 24(1): 117, 2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-36967390

RESUMO

BACKGROUND: Biomedical researchers use alignments produced by BLAST (Basic Local Alignment Search Tool) to categorize their query sequences. Producing such alignments is an essential bioinformatics task that is well suited for the cloud. The cloud can perform many calculations quickly as well as store and access large volumes of data. Bioinformaticians can also use it to collaborate with other researchers, sharing their results, datasets and even their pipelines on a common platform. RESULTS: We present ElasticBLAST, a cloud native application to perform BLAST alignments in the cloud. ElasticBLAST can handle anywhere from a few to many thousands of queries and run the searches on thousands of virtual CPUs (if desired), deleting resources when it is done. It uses cloud native tools for orchestration and can request discounted instances, lowering cloud costs for users. It is supported on Amazon Web Services and Google Cloud Platform. It can search BLAST databases that are user provided or from the National Center for Biotechnology Information. CONCLUSION: We show that ElasticBLAST is a useful application that can efficiently perform BLAST searches for the user in the cloud, demonstrating that with two examples. At the same time, it hides much of the complexity of working in the cloud, lowering the threshold to move work to the cloud.


Assuntos
Computação em Nuvem , Software , Biologia Computacional/métodos , Bases de Dados Factuais , Custos e Análise de Custo
2.
bioRxiv ; 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36789435

RESUMO

Background: Biomedical researchers use alignments produced by BLAST (Basic Local Alignment Search Tool) to categorize their query sequences. Producing such alignments is an essential bioinformatics task that is well suited for the cloud. The cloud can perform many calculations quickly as well as store and access large volumes of data. Bioinformaticians can also use it to collaborate with other researchers, sharing their results, datasets and even their pipelines on a common platform. Results: We present ElasticBLAST, a cloud native application to perform BLAST alignments in the cloud. ElasticBLAST can handle anywhere from a few to many thousands of queries and run the searches on thousands of virtual CPUs (if desired), deleting resources when it is done. It uses cloud native tools for orchestration and can request discounted instances, lowering cloud costs for users. It is supported on Amazon Web Services and Google Cloud Platform. It can search BLAST databases that are user provided or from the National Center for Biotechnology Information. Conclusion: We show that ElasticBLAST is a useful application that can efficiently perform BLAST searches for the user in the cloud, demonstrating that with two examples. At the same time, it hides much of the complexity of working in the cloud, lowering the threshold to move work to the cloud.

3.
Nucleic Acids Res ; 51(D1): D29-D38, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36370100

RESUMO

The National Center for Biotechnology Information (NCBI) provides online information resources for biology, including the GenBank® nucleic acid sequence database and the PubMed® database of citations and abstracts published in life science journals. NCBI provides search and retrieval operations for most of these data from 35 distinct databases. The E-utilities serve as the programming interface for most of these databases. New resources include the Comparative Genome Resource (CGR) and the BLAST ClusteredNR database. Resources receiving significant updates in the past year include PubMed, PMC, Bookshelf, IgBLAST, GDV, RefSeq, NCBI Virus, GenBank type assemblies, iCn3D, ClinVar, GTR, dbGaP, ALFA, ClinicalTrials.gov, Pathogen Detection, antimicrobial resistance resources, and PubChem. These resources can be accessed through the NCBI home page at https://www.ncbi.nlm.nih.gov.


Assuntos
Bases de Dados Genéticas , Bases de Dados de Ácidos Nucleicos , Estados Unidos , National Library of Medicine (U.S.) , Alinhamento de Sequência , Biotecnologia , Internet
4.
Nucleic Acids Res ; 49(D1): D10-D17, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33095870

RESUMO

The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank® nucleic acid sequence database and the PubMed® database of citations and abstracts published in life science journals. The Entrez system provides search and retrieval operations for most of these data from 34 distinct databases. The E-utilities serve as the programming interface for the Entrez system. Custom implementations of the BLAST program provide sequence-based searching of many specialized datasets. New resources released in the past year include a new PubMed interface and NCBI datasets. Additional resources that were updated in the past year include PMC, Bookshelf, Genome Data Viewer, SRA, ClinVar, dbSNP, dbVar, Pathogen Detection, BLAST, Primer-BLAST, IgBLAST, iCn3D and PubChem. All of these resources can be accessed through the NCBI home page at https://www.ncbi.nlm.nih.gov.


Assuntos
Bases de Dados Genéticas , National Library of Medicine (U.S.) , Biologia Computacional/métodos , Bases de Dados de Compostos Químicos , Bases de Dados de Ácidos Nucleicos , Bases de Dados de Proteínas , Genômica/métodos , Humanos , PubMed , Estados Unidos
5.
Nucleic Acids Res ; 48(D1): D9-D16, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31602479

RESUMO

The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank® nucleic acid sequence database and the PubMed database of citations and abstracts published in life science journals. The Entrez system provides search and retrieval operations for most of these data from 35 distinct databases. The E-utilities serve as the programming interface for the Entrez system. Custom implementations of the BLAST program provide sequence-based searching of many specialized datasets. New resources released in the past year include a new PubMed interface, a sequence database search and a gene orthologs page. Additional resources that were updated in the past year include PMC, Bookshelf, My Bibliography, Assembly, RefSeq, viral genomes, the prokaryotic genome annotation pipeline, Genome Workbench, dbSNP, BLAST, Primer-BLAST, IgBLAST and PubChem. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.


Assuntos
Biologia Computacional/métodos , Biologia Computacional/organização & administração , Bases de Dados Genéticas , National Library of Medicine (U.S.) , Bases de Dados de Ácidos Nucleicos , Genômica/métodos , Humanos , PubMed , Estados Unidos , Navegador
6.
BMC Bioinformatics ; 20(1): 405, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31345161

RESUMO

BACKGROUND: Next-generation sequencing technologies can produce tens of millions of reads, often paired-end, from transcripts or genomes. But few programs can align RNA on the genome and accurately discover introns, especially with long reads. We introduce Magic-BLAST, a new aligner based on ideas from the Magic pipeline. RESULTS: Magic-BLAST uses innovative techniques that include the optimization of a spliced alignment score and selective masking during seed selection. We evaluate the performance of Magic-BLAST to accurately map short or long sequences and its ability to discover introns on real RNA-seq data sets from PacBio, Roche and Illumina runs, and on six benchmarks, and compare it to other popular aligners. Additionally, we look at alignments of human idealized RefSeq mRNA sequences perfectly matching the genome. CONCLUSIONS: We show that Magic-BLAST is the best at intron discovery over a wide range of conditions and the best at mapping reads longer than 250 bases, from any platform. It is versatile and robust to high levels of mismatches or extreme base composition, and reasonably fast. It can align reads to a BLAST database or a FASTA file. It can accept a FASTQ file as input or automatically retrieve an accession from the SRA repository at the NCBI.


Assuntos
RNA/genética , Alinhamento de Sequência , Análise de Sequência de RNA/métodos , Software , Algoritmos , Sequência de Bases , Bases de Dados de Ácidos Nucleicos , Humanos , Íntrons/genética , Curva ROC , Fatores de Tempo
7.
Nucleic Acids Res ; 47(D1): D23-D28, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30395293

RESUMO

The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank® nucleic acid sequence database and the PubMed database of citations and abstracts published in life science journals. The Entrez system provides search and retrieval operations for most of these data from 38 distinct databases. The E-utilities serve as the programming interface for the Entrez system. Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized data sets. New resources released in the past year include PubMed Labs and a new sequence database search. Resources that were updated in the past year include PubMed, PMC, Bookshelf, genome data viewer, Assembly, prokaryotic genomes, Genome, BioProject, dbSNP, dbVar, BLAST databases, igBLAST, iCn3D and PubChem. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.


Assuntos
Biotecnologia/organização & administração , Bases de Dados Genéticas , Animais , Biotecnologia/métodos , Bases de Dados de Compostos Químicos , Humanos , Software , Estados Unidos/epidemiologia , Navegador
9.
Nucleic Acids Res ; 41(Web Server issue): W34-40, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23671333

RESUMO

The variable domain of an immunoglobulin (IG) sequence is encoded by multiple genes, including the variable (V) gene, the diversity (D) gene and the joining (J) gene. Analysis of IG sequences typically requires identification of each gene, as well as a comparison of sequence variations in the context of defined regions. General purpose tools, such as the BLAST program, have only limited use for such tasks, as the rearranged nature of an IG sequence and the variable length of each gene requires multiple rounds of BLAST searches for a single IG sequence. Additionally, manual assembly of different genes is difficult and error-prone. To address these issues and to facilitate other common tasks in analysing IG sequences, we have developed the sequence analysis tool IgBLAST (http://www.ncbi.nlm.nih.gov/igblast/). With this tool, users can view the matches to the germline V, D and J genes, details at rearrangement junctions, the delineation of IG V domain framework regions and complementarity determining regions. IgBLAST has the capability to analyse nucleotide and protein sequences and can process sequences in batches. Furthermore, IgBLAST allows searches against the germline gene databases and other sequence databases simultaneously to minimize the chance of missing possibly the best matching germline V gene.


Assuntos
Região Variável de Imunoglobulina/genética , Alinhamento de Sequência/métodos , Software , Humanos , Região Variável de Imunoglobulina/química , Internet , Análise de Sequência de DNA , Análise de Sequência de Proteína , Recombinação V(D)J
10.
Nucleic Acids Res ; 41(Web Server issue): W29-33, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23609542

RESUMO

The Basic Local Alignment Search Tool (BLAST) website at the National Center for Biotechnology (NCBI) is an important resource for searching and aligning sequences. A new BLAST report allows faster loading of alignments, adds navigation aids, allows easy downloading of subject sequences and reports and has improved usability. Here, we describe these improvements to the BLAST report, discuss design decisions, describe other improvements to the search page and database documentation and outline plans for future development. The NCBI BLAST URL is http://blast.ncbi.nlm.nih.gov.


Assuntos
Alinhamento de Sequência/métodos , Software , Animais , Genômica , Internet , L-Gulonolactona Oxidase/genética , Ratos
11.
BMC Res Notes ; 5: 286, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22691307

RESUMO

BACKGROUND: Local alignment programs often calculate the probability that a match occurred by chance. The calculation of this probability may require a "finite-size" correction to the lengths of the sequences, as an alignment that starts near the end of either sequence may run out of sequence before achieving a significant score. FINDINGS: We present an improved finite-size correction that considers the distribution of sequence lengths rather than simply the corresponding means. This approach improves sensitivity and avoids substituting an ad hoc length for short sequences that can underestimate the significance of a match. We use a test set derived from ASTRAL to show improved ROC scores, especially for shorter sequences. CONCLUSIONS: The new finite-size correction improves the calculation of probabilities for a local alignment. It is now used in the BLAST+ package and at the NCBI BLAST web site ( http://blast.ncbi.nlm.nih.gov).


Assuntos
Sequência de Aminoácidos , Alinhamento de Sequência/métodos , Software , Bases de Dados de Proteínas , Internet , Dados de Sequência Molecular , Probabilidade , Projetos de Pesquisa , Alinhamento de Sequência/estatística & dados numéricos
12.
BMC Bioinformatics ; 13: 134, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22708584

RESUMO

BACKGROUND: Choosing appropriate primers is probably the single most important factor affecting the polymerase chain reaction (PCR). Specific amplification of the intended target requires that primers do not have matches to other targets in certain orientations and within certain distances that allow undesired amplification. The process of designing specific primers typically involves two stages. First, the primers flanking regions of interest are generated either manually or using software tools; then they are searched against an appropriate nucleotide sequence database using tools such as BLAST to examine the potential targets. However, the latter is not an easy process as one needs to examine many details between primers and targets, such as the number and the positions of matched bases, the primer orientations and distance between forward and reverse primers. The complexity of such analysis usually makes this a time-consuming and very difficult task for users, especially when the primers have a large number of hits. Furthermore, although the BLAST program has been widely used for primer target detection, it is in fact not an ideal tool for this purpose as BLAST is a local alignment algorithm and does not necessarily return complete match information over the entire primer range. RESULTS: We present a new software tool called Primer-BLAST to alleviate the difficulty in designing target-specific primers. This tool combines BLAST with a global alignment algorithm to ensure a full primer-target alignment and is sensitive enough to detect targets that have a significant number of mismatches to primers. Primer-BLAST allows users to design new target-specific primers in one step as well as to check the specificity of pre-existing primers. Primer-BLAST also supports placing primers based on exon/intron locations and excluding single nucleotide polymorphism (SNP) sites in primers. CONCLUSIONS: We describe a robust and fully implemented general purpose primer design tool that designs target-specific PCR primers. Primer-BLAST offers flexible options to adjust the specificity threshold and other primer properties. This tool is publicly available at http://www.ncbi.nlm.nih.gov/tools/primer-blast.


Assuntos
Algoritmos , Primers do DNA/genética , Reação em Cadeia da Polimerase/métodos , Software , Proteínas de Transporte/genética , Humanos , Íntrons , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único
13.
Biol Direct ; 7: 12, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22510480

RESUMO

BACKGROUND: BLAST is a commonly-used software package for comparing a query sequence to a database of known sequences; in this study, we focus on protein sequences. Position-specific-iterated BLAST (PSI-BLAST) iteratively searches a protein sequence database, using the matches in round i to construct a position-specific score matrix (PSSM) for searching the database in round i + 1. Biegert and Söding developed Context-sensitive BLAST (CS-BLAST), which combines information from searching the sequence database with information derived from a library of short protein profiles to achieve better homology detection than PSI-BLAST, which builds its PSSMs from scratch. RESULTS: We describe a new method, called domain enhanced lookup time accelerated BLAST (DELTA-BLAST), which searches a database of pre-constructed PSSMs before searching a protein-sequence database, to yield better homology detection. For its PSSMs, DELTA-BLAST employs a subset of NCBI's Conserved Domain Database (CDD). On a test set derived from ASTRAL, with one round of searching, DELTA-BLAST achieves a ROC5000 of 0.270 vs. 0.116 for CS-BLAST. The performance advantage diminishes in iterated searches, but DELTA-BLAST continues to achieve better ROC scores than CS-BLAST. CONCLUSIONS: DELTA-BLAST is a useful program for the detection of remote protein homologs. It is available under the "Protein BLAST" link at http://blast.ncbi.nlm.nih.gov.


Assuntos
Bases de Dados de Proteínas , Estrutura Terciária de Proteína , Ferramenta de Busca/métodos , Software , Algoritmos , Biologia Computacional/métodos , Internet , Curva ROC , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos , Homologia de Sequência de Aminoácidos , Fatores de Tempo
14.
Nucleic Acids Res ; 40(Database issue): D13-25, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22140104

RESUMO

In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Website. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central (PMC), Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, Genome and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Probe, Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.


Assuntos
Bases de Dados como Assunto , Bases de Dados Genéticas , Bases de Dados de Proteínas , Expressão Gênica , Genômica , Internet , Modelos Moleculares , National Library of Medicine (U.S.) , Publicações Periódicas como Assunto , PubMed , Alinhamento de Sequência , Análise de Sequência de DNA , Análise de Sequência de Proteína , Análise de Sequência de RNA , Bibliotecas de Moléculas Pequenas , Estados Unidos
15.
Nucleic Acids Res ; 39(Database issue): D38-51, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21097890

RESUMO

In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central (PMC), Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Electronic PCR, OrfFinder, Splign, ProSplign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Entrez Probe, GENSAT, Online Mendelian Inheritance in Man (OMIM), Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), IBIS, Biosystems, Peptidome, OMSSA, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.


Assuntos
Bases de Dados Genéticas , Bases de Dados de Proteínas , Expressão Gênica , Genômica , National Library of Medicine (U.S.) , Estrutura Terciária de Proteína , PubMed , Alinhamento de Sequência , Análise de Sequência de DNA , Análise de Sequência de RNA , Software , Integração de Sistemas , Estados Unidos
16.
Nucleic Acids Res ; 38(Database issue): D5-16, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19910364

RESUMO

In addition to maintaining the GenBank nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, Splign, Reference Sequence, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Entrez Probe, GENSAT, Online Mendelian Inheritance in Man, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool, Biosystems, Peptidome, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized data sets. All these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Bases de Dados de Ácidos Nucleicos , Algoritmos , Animais , Biologia Computacional/tendências , Bases de Dados de Proteínas , Genoma Bacteriano , Genoma Viral , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , National Institutes of Health (U.S.) , National Library of Medicine (U.S.) , Software , Estados Unidos
17.
BMC Bioinformatics ; 10: 421, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20003500

RESUMO

BACKGROUND: Sequence similarity searching is a very important bioinformatics task. While Basic Local Alignment Search Tool (BLAST) outperforms exact methods through its use of heuristics, the speed of the current BLAST software is suboptimal for very long queries or database sequences. There are also some shortcomings in the user-interface of the current command-line applications. RESULTS: We describe features and improvements of rewritten BLAST software and introduce new command-line applications. Long query sequences are broken into chunks for processing, in some cases leading to dramatically shorter run times. For long database sequences, it is possible to retrieve only the relevant parts of the sequence, reducing CPU time and memory usage for searches of short queries against databases of contigs or chromosomes. The program can now retrieve masking information for database sequences from the BLAST databases. A new modular software library can now access subject sequence data from arbitrary data sources. We introduce several new features, including strategy files that allow a user to save and reuse their favorite set of options. The strategy files can be uploaded to and downloaded from the NCBI BLAST web site. CONCLUSION: The new BLAST command-line applications, compared to the current BLAST tools, demonstrate substantial speed improvements for long queries as well as chromosome length database sequences. We have also improved the user interface of the command-line applications.


Assuntos
Biologia Computacional/métodos , Software , Bases de Dados Genéticas , Alinhamento de Sequência
18.
Nucleic Acids Res ; 37(Database issue): D5-15, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18940862

RESUMO

In addition to maintaining the GenBank nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups (COGs), Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Entrez Probe, GENSAT, Online Mendelian Inheritance in Man (OMIM), Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART) and the PubChem suite of small molecule databases. Augmenting many of the web applications is custom implementation of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.


Assuntos
Bases de Dados Genéticas , Expressão Gênica , Genes , Genômica , Genótipo , National Library of Medicine (U.S.) , Fenótipo , Estrutura Terciária de Proteína , Proteômica , PubMed , Homologia de Sequência , Integração de Sistemas , Estados Unidos
19.
Bioinformatics ; 24(16): 1757-64, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18567917

RESUMO

MOTIVATION: The BLAST software package for sequence comparison speeds up homology search by preprocessing a query sequence into a lookup table. Numerous research studies have suggested that preprocessing the database instead would give better performance. However, production usage of sequence comparison methods that preprocess the database has been limited to programs such as BLAT and SSAHA that are designed to find matches when query and database subsequences are highly similar. RESULTS: We developed a new version of the MegaBLAST module of BLAST that does the initial phase of finding short seeds for matches by searching a database index. We also developed a program makembindex that preprocesses the database into a data structure for rapid seed searching. We show that the new 'indexed MegaBLAST' is faster than the 'non-indexed' version for most practical uses. We show that indexed MegaBLAST is faster than miBLAST, another implementation of BLAST nucleotide searching with a preprocessed database, for most of the 200 queries we tested. To deploy indexed MegaBLAST as part of NCBI'sWeb BLAST service, the storage of databases and the queueing mechanism were modified, so that some machines are now dedicated to serving queries for a specific database. The response time for such Web queries is now faster than it was when each computer handled queries for multiple databases. AVAILABILITY: The code for indexed MegaBLAST is part of the blastn program in the NCBI C++ toolkit. The preprocessor program makembindex is also in the toolkit. Indexed MegaBLAST has been used in production on NCBI's Web BLAST service to search one version of the human and mouse genomes since October 2007. The Linux command-line executables for blastn and makembindex, documentation, and some query sets used to carry out the tests described below are available in the directory: ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/indexed_megablast [corrected] SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Bases de Dados de Proteínas , Armazenamento e Recuperação da Informação/métodos , Proteínas/química , Análise de Sequência de Proteína/métodos , Software , Interface Usuário-Computador , Sequência de Aminoácidos , Dados de Sequência Molecular , Alinhamento de Sequência/métodos
20.
Nucleic Acids Res ; 36(Web Server issue): W5-9, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18440982

RESUMO

Basic Local Alignment Search Tool (BLAST) is a sequence similarity search program. The public interface of BLAST, http://www.ncbi.nlm.nih.gov/blast, at the NCBI website has recently been reengineered to improve usability and performance. Key new features include simplified search forms, improved navigation, a list of recent BLAST results, saved search strategies and a documentation directory. Here, we describe the BLAST web application's new features, explain design decisions and outline plans for future improvement.


Assuntos
Alinhamento de Sequência , Software , Bases de Dados Genéticas , Internet , National Library of Medicine (U.S.) , Estados Unidos , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...