Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Ophthalmol ; 17(1): 54, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446133

RESUMO

BACKGROUND: The present study sought to evaluate the efficacy of N-acetylcysteine amide (NACA) eye drops in reversing the cataract formation induced by sodium selenite in male Wistar rat pups. METHODS: Forty male Wistar rat pups were randomly divided into a control group, an N-acetylcysteine amide-only group, a sodium selenite-induced cataract group, and a NACA-treated sodium selenite-induced cataract group. Sodium selenite was injected intraperitoneally on postpartum day 10, whereas N-acetylcysteine amide was injected intraperitoneally on postpartum days 9, 11, and 13 in the respective groups. Cataracts were evaluated at the end of week 2 (postpartum day 14) when the rat pups opened their eyes. N-acetylcysteine amide eye drops were administered beginning on week 3 until the end of week 4 (postpartum days 15 to 30), and the rats were sacrificed at the end of week 4. Lenses were isolated and examined for oxidative stress parameters such as glutathione, lipid peroxidation, and calcium levels along with the glutathione reductase and thioltransferase enzyme activities. Casein zymography and Western blot of m-calpain were performed using the water soluble fraction of lens proteins. RESULTS: Morphological examination of the lenses in the NACA-treated group indicated that NACA was able to reverse the cataract grade. In addition, glutathione level, thioltransferase activity, m-calpain activity, and m-calpain level (as assessed by Western blot) were all significantly higher in the NACA-treated group than in the sodium selenite-induced cataract group. Furthermore, sodium selenite- injected rat pups had significantly higher levels of malondialdehyde, glutathione reductase enzyme activity, and calcium levels, which were reduced to control levels upon treatment with NACA. CONCLUSIONS: The data suggest that NACA has the potential to significantly improve vision and decrease the burden of cataract-related loss of function. Prevention and reversal of cataract formation could have a global impact. Development of pharmacological agents like NACA may eventually prevent cataract formation in high-risk populations and may prevent progression of early-stage cataracts. This brings a paradigm shift from expensive surgical treatment of cataracts to relatively inexpensive prevention of vision loss.


Assuntos
Acetilcisteína/análogos & derivados , Catarata/prevenção & controle , Cristalino/metabolismo , Estresse Oxidativo , Acetilcisteína/administração & dosagem , Animais , Western Blotting , Catarata/induzido quimicamente , Catarata/diagnóstico , Modelos Animais de Doenças , Cristalino/efeitos dos fármacos , Masculino , Soluções Oftálmicas , Ratos , Ratos Wistar , Ácido Selenioso/toxicidade
2.
Brain Res ; 1608: 157-66, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25681547

RESUMO

Manganese (Mn) is an essential trace element required for normal cellular functioning. However, overexposure of Mn can be neurotoxic resulting in the development of manganism, a syndrome that resembles Parkinson׳s disease. Although the pathogenetic basis of this disorder is unclear, several studies indicate that it is mainly associated with oxidative stress and mitochondrial energy failure. Therefore, this study is focused on (1) investigating the oxidative effects of Mn on neuroblastoma cells (SHSY5Y) and (2) elucidating whether a novel thiol antioxidant, N-acetylcysteineamide (NACA), provides any protection against Mn-induced neurotoxicity. Reactive oxygen species (ROS) were highly elevated after the exposure, indicating that mechanisms that induce oxidative stress were involved. Measures of oxidative stress parameters, such as glutathione (GSH), malondialdehyde (MDA), and activities of glutathione reductase (GR) and glutathione peroxidase (GPx) were altered in the Mn-treated groups. Loss of mitochondrial membrane potential, as assessed by flow cytometry and decreased levels of ATP, indicated that cytotoxicity was mediated through mitochondrial dysfunction. However, pretreatment with NACA protected against Mn-induced toxicity by inhibiting lipid peroxidation, scavenging ROS, and preserving intracellular GSH and mitochondrial membrane potential. NACA can potentially be developed into a promising therapeutic option for Mn-induced neurotoxicity. This article is part of a Special Issue entitled SI: Metals in neurodegeneration.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Manganês/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Neuroblastoma/patologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...