Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 405: 123335, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33317894

RESUMO

Biomass feedstocks offer very promising sustainable production of fuels and chemicals as fossil fuels generate greenhouse gases and are going to become scarce. Nevertheless, establishing value addition to biomass waste to produce commodity chemicals by combining economic and environmental performances is complex. In this context, hydrogenation of biomass based levulinic acid at normal atmospheric reaction conditions using robust cobalt supported on porous heterogeneous catalyst has been studied at 200 °C in a continuous process. The systematic investigation of Lewis acidic sites and low reaction temperature contribute to achieve 99 % conversion of levulinic acid and 80 % selectivity of γ-valerolactone.


Assuntos
Cobalto , Ácidos Levulínicos , Biomassa , Catálise , Lactonas
2.
Sci Rep ; 10(1): 22170, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335173

RESUMO

Magnesium aluminate spinel (MgAl2O4) supported Co3O4 catalysts are synthesized and tested for the oxidative dehydrogenation (ODH) of ethylbenzene using CO2 as a soft oxidant. The effect of spinel calcination temperature on the catalytic performance has been systematically investigated. With an increase in the activation temperature from 600 to 900 °C, the active presence of a single-phase MgAl2O4 spinel is observed. A catalyst series consisting of MgAl2O4 spinel with varying Co loadings (10-20 wt%) were prepared and systematically distinguished by ICP, XRD, BET, TPR, NH3-TPD, UV-Vis DRS, FT-IR, XPS, SEM, and TEM. Among the tested cobalt catalysts, 15Co/800MA sample derived by calcination of MgAl2O4 support at 800 °C exhibits the most excellent catalytic performance with the maximum ethylbenzene conversion (≥ 82%). Also, high yields of styrene (≥ 81%) could be consistently achieved on the same active catalyst. Further, the catalyst exhibited almost stable activity during 20 h time-on-stream with a slow decrease in the ethylbenzene conversion from 82 to 59%. However, the selectivity of styrene (98%) stayed almost constant during the reaction. Activation of the MgAl2O4 spinel at 800 °C facilitates a dramatic chemical homogeneity for the alignment of Co3O4 nanoparticles on the surface of the active catalyst. Moreover, the isolated Co3O4 clusters have a strong chemical/electronic interaction with the Mg2+ and Al3+ ions on the support perform a crucial role to achieve the maximum catalytic activity.

3.
RSC Adv ; 10(64): 38755-38766, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35518448

RESUMO

Direct catalytic coupling of nitrobenzene hydrogenation and cyclohexanol dehydrogenation was studied in the gas phase over mesoporous MgO-SBA15 supported Cu nanoparticles. This approach avoids an external supply of H2 and utilizes the in situ liberated H2 from the dehydrogenation step of the first reactant for the hydrogenation reaction of the second reactant. A catalyst series consisting of four Cu/MgO-SBA15 mesoporous solids with varying Cu loadings (5-20 wt%) were prepared and systematically characterized by BET, ICP, XRD, TPR, TPD, FT-IR, SEM, XPS, and TEM. Among the series, the 15 wt% Cu catalyst exhibited the best performance with ≥82% conversion of nitrobenzene along with ≥89% cyclohexanol conversion. In addition, significantly higher yields of cyclohexanone (83%) and aniline (75%) could be achieved successfully over the same catalyst. Furthermore, the catalyst exhibited almost stable activity during 30 h time-on-stream with slow deactivation. The highly ordered mesoporous silica increases the metal-support interaction with smaller particles of Cu on the surface, and the synergism between acid-base sites is responsible for the improved catalytic activity.

4.
Heliyon ; 5(2): e01212, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30809597

RESUMO

Activated red brick (ARB) clay material proved superb catalyst for selective conversion of 1,5-pentanediol (1,5-PDO) to tetrahydropyran (THP) and 1,6-hexanediol (1,6-HDO) to oxepane (OP) via dehydration under vapor phase conditions in a continuous flow reactor. As per scanning electron microscopy (SEM), SEM-EDX and X-ray fluorescence (XRF) techniques, ARB clay catalyst majorly possessed silica (quartz), and iron oxide (hematite) species, and synergistic texture contributed to the catalytic efficiency for prolonged time-on-stream (TOS). The combination of active Lewis and Bronsted acidic sites with weak to mild acidic nature in the ARB clay obviously facilitates the dehydration reaction with high selectivity, tetrahydropyran (82%) and oxepane (89%). ARB clay displayed superior catalytic properties in the dehydration of alcohols compared with activities of commercial silica and α-Fe2O3 as catalysts. Commercial silica and α-Fe2O3 catalysts possessing the Lewis acidic sites only did not facilitate synchronous dehydration mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...