Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 16(12): e1009244, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33301440

RESUMO

The genetic origin of human skin pigmentation remains an open question in biology. Several skin disorders and diseases originate from mutations in conserved pigmentation genes, including albinism, vitiligo, and melanoma. Teleosts possess the capacity to modify their pigmentation to adapt to their environmental background to avoid predators. This background adaptation occurs through melanosome aggregation (white background) or dispersion (black background) in melanocytes. These mechanisms are largely regulated by melanin-concentrating hormone (MCH) and α-melanocyte-stimulating hormone (α-MSH), two hypothalamic neuropeptides also involved in mammalian skin pigmentation. Despite evidence that the exogenous application of MCH peptides induces melanosome aggregation, it is not known if the MCH system is physiologically responsible for background adaptation. In zebrafish, we identify that MCH neurons target the pituitary gland-blood vessel portal and that endogenous MCH peptide expression regulates melanin concentration for background adaptation. We demonstrate that this effect is mediated by MCH receptor 2 (Mchr2) but not Mchr1a/b. mchr2 knock-out fish cannot adapt to a white background, providing the first genetic demonstration that MCH signaling is physiologically required to control skin pigmentation. mchr2 phenotype can be rescued in adult fish by knocking-out pomc, the gene coding for the precursor of α-MSH, demonstrating the relevance of the antagonistic activity between MCH and α-MSH in the control of melanosome organization. Interestingly, MCH receptor is also expressed in human melanocytes, thus a similar antagonistic activity regulating skin pigmentation may be conserved during evolution, and the dysregulation of these pathways is significant to our understanding of human skin disorders and cancers.


Assuntos
Hormônios Hipotalâmicos/metabolismo , Melaninas/metabolismo , Hormônios Hipofisários/metabolismo , Pigmentação da Pele/genética , Animais , Hormônios Hipotalâmicos/genética , Hipotálamo/citologia , Hipotálamo/metabolismo , Melaninas/genética , Hormônios Estimuladores de Melanócitos/genética , Hormônios Estimuladores de Melanócitos/metabolismo , Melanócitos/metabolismo , Neurônios/metabolismo , Hormônios Hipofisários/genética , Peixe-Zebra
2.
Development ; 147(24)2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33144399

RESUMO

Sense organs acquire their distinctive shapes concomitantly with the differentiation of sensory cells and neurons necessary for their function. Although our understanding of the mechanisms controlling morphogenesis and neurogenesis in these structures has grown, how these processes are coordinated remains largely unexplored. Neurogenesis in the zebrafish olfactory epithelium requires the bHLH proneural transcription factor Neurogenin 1 (Neurog1). To address whether Neurog1 also controls morphogenesis, we analysed the migratory behaviour of early olfactory neural progenitors in neurog1 mutant embryos. Our results indicate that the oriented movements of these progenitors are disrupted in this context. Morphogenesis is similarly affected by mutations in the chemokine receptor gene, cxcr4b, suggesting it is a potential Neurog1 target gene. We find that Neurog1 directly regulates cxcr4b through an E-box cluster located just upstream of the cxcr4b transcription start site. Our results suggest that proneural transcription factors, such as Neurog1, directly couple distinct aspects of nervous system development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Morfogênese/genética , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Mucosa Olfatória/crescimento & desenvolvimento , Receptores CXCR4/genética , Proteínas de Peixe-Zebra/genética , Animais , Elementos E-Box/genética , Embrião não Mamífero , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Mutação/genética , Neurônios/metabolismo , Sítio de Iniciação de Transcrição , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
3.
Nature ; 571(7764): 198-204, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31292557

RESUMO

Slow-wave sleep and rapid eye movement (or paradoxical) sleep have been found in mammals, birds and lizards, but it is unclear whether these neuronal signatures are found in non-amniotic vertebrates. Here we develop non-invasive fluorescence-based polysomnography for zebrafish, and show-using unbiased, brain-wide activity recording coupled with assessment of eye movement, muscle dynamics and heart rate-that there are at least two major sleep signatures in zebrafish. These signatures, which we term slow bursting sleep and propagating wave sleep, share commonalities with those of slow-wave sleep and paradoxical or rapid eye movement sleep, respectively. Further, we find that melanin-concentrating hormone signalling (which is involved in mammalian sleep) also regulates propagating wave sleep signatures and the overall amount of sleep in zebrafish, probably via activation of ependymal cells. These observations suggest that common neural signatures of sleep may have emerged in the vertebrate brain over 450 million years ago.


Assuntos
Neurônios/fisiologia , Sono/fisiologia , Peixe-Zebra/fisiologia , Animais , Evolução Biológica , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Epêndima/citologia , Movimentos Oculares , Fluorescência , Frequência Cardíaca , Hipnóticos e Sedativos/farmacologia , Hormônios Hipotalâmicos/metabolismo , Melaninas/metabolismo , Neurônios/efeitos dos fármacos , Pigmentação/fisiologia , Hormônios Hipofisários/metabolismo , Polissonografia/métodos , Sono/efeitos dos fármacos , Privação do Sono/fisiopatologia , Sono REM/efeitos dos fármacos , Sono REM/fisiologia , Sono de Ondas Lentas/efeitos dos fármacos , Sono de Ondas Lentas/fisiologia
4.
Nucleic Acids Res ; 46(7): 3517-3531, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29518216

RESUMO

Thousands of human disease-associated single nucleotide polymorphisms (SNPs) lie in the non-coding genome, but only a handful have been demonstrated to affect gene expression and human biology. We computationally identified risk-associated SNPs in deeply conserved non-exonic elements (CNEs) potentially contributing to 45 human diseases. We further demonstrated that human CNE1/rs17421627 associated with retinal vasculature defects showed transcriptional activity in the zebrafish retina, while introducing the risk-associated allele completely abolished CNE1 enhancer activity. Furthermore, deletion of CNE1 led to retinal vasculature defects and to a specific downregulation of microRNA-9, rather than MEF2C as predicted by the original genome-wide association studies. Consistent with these results, miR-9 depletion affects retinal vasculature formation, demonstrating MIR-9-2 as a critical gene underpinning the associated trait. Importantly, we validated that other CNEs act as transcriptional enhancers that can be disrupted by conserved non-coding SNPs. This study uncovers disease-associated non-coding mutations that are deeply conserved, providing a path for in vivo testing to reveal their cis-regulated genes and biological roles.


Assuntos
Elementos Facilitadores Genéticos/genética , MicroRNAs/genética , Vasculite Retiniana/genética , Alelos , Animais , Sequência Conservada/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla , Humanos , Fatores de Transcrição MEF2/genética , Mutação , Polimorfismo de Nucleotídeo Único/genética , Retina/metabolismo , Retina/patologia , Vasculite Retiniana/patologia , Peixe-Zebra/genética
5.
Elife ; 72018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29292696

RESUMO

The zebrafish olfactory epithelium comprises a variety of neuronal populations, which are thought to have distinct embryonic origins. For instance, while ciliated sensory neurons arise from preplacodal ectoderm (PPE), previous lineage tracing studies suggest that both Gonadotropin releasing hormone 3 (Gnrh3) and microvillous sensory neurons derive from cranial neural crest (CNC). We find that the expression of Islet1/2 is restricted to Gnrh3 neurons associated with the olfactory epithelium. Unexpectedly, however, we find no change in Islet1/2+ cell numbers in sox10 mutant embryos, calling into question their CNC origin. Lineage reconstruction based on backtracking in time-lapse confocal datasets, and confirmed by photoconversion experiments, reveals that Gnrh3 neurons derive from the anterior PPE. Similarly, all of the microvillous sensory neurons we have traced arise from preplacodal progenitors. Our results suggest that rather than originating from separate ectodermal populations, cell-type heterogeneity is generated from overlapping pools of progenitors within the preplacodal ectoderm.


Assuntos
Linhagem da Célula , Ectoderma/embriologia , Neurônios/fisiologia , Mucosa Olfatória/embriologia , Peixe-Zebra/embriologia , Animais , Microscopia Confocal , Imagem com Lapso de Tempo
6.
Neural Regen Res ; 12(11): 1765-1767, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29239312

RESUMO

In humans, optic nerve injuries and associated neurodegenerative diseases are often followed by permanent vision loss. Consequently, an important challenge is to develop safe and effective methods to replace retinal neurons and thereby restore neuronal functions and vision. Identifying cellular and molecular mechanisms allowing to replace damaged neurons is a major goal for basic and translational research in regenerative medicine. Contrary to mammals, the zebrafish has the capacity to fully regenerate entire parts of the nervous system, including retina. This regenerative process depends on endogenous retinal neural stem cells, the Müller glial cells. Following injury, zebrafish Müller cells go back into cell cycle to proliferate and generate new neurons, while mammalian Müller cells undergo reactive gliosis. Recently, transcription factors and microRNAs have been identified to control the formation of new neurons derived from zebrafish and mammalian Müller cells, indicating that cellular reprogramming can be an efficient strategy to regenerate human retinal neurons. Here we discuss recent insights into the use of endogenous neural stem cell reprogramming for neuronal regeneration, differences between zebrafish and mammalian Müller cells, and the need to pursue the identification and characterization of new molecular factors with an instructive and potent function in order to develop theurapeutic strategies for eye diseases.

7.
Cell Rep ; 20(7): 1533-1542, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28813666

RESUMO

In the developing brain, neurons expressing VEGF-A and blood vessels grow in close apposition, but many of the molecular pathways regulating neuronal VEGF-A and neurovascular system development remain to be deciphered. Here, we show that miR-9 links neurogenesis and angiogenesis through the formation of neurons expressing VEGF-A. We found that miR-9 directly targets the transcription factors TLX and ONECUTs to regulate VEGF-A expression. miR-9 inhibition leads to increased TLX and ONECUT expression, resulting in VEGF-A overexpression. This untimely increase of neuronal VEGF-A signal leads to the thickening of blood vessels at the expense of the normal formation of the neurovascular network in the brain and retina. Thus, this conserved transcriptional cascade is critical for proper brain development in vertebrates. Because of this dual role on neural stem cell proliferation and angiogenesis, miR-9 and its downstream targets are promising factors for cellular regenerative therapy following stroke and for brain tumor treatment.


Assuntos
Córtex Cerebral/metabolismo , MicroRNAs/genética , Neovascularização Fisiológica/genética , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Sequência de Bases , Sítios de Ligação , Diferenciação Celular , Proliferação de Células , Córtex Cerebral/crescimento & desenvolvimento , Embrião não Mamífero , Feto , Regulação da Expressão Gênica no Desenvolvimento , Fator 6 Nuclear de Hepatócito/genética , Fator 6 Nuclear de Hepatócito/metabolismo , Humanos , MicroRNAs/metabolismo , Morfogênese/genética , Células-Tronco Neurais/citologia , Neurônios/metabolismo , Neurônios/patologia , Receptores Nucleares Órfãos , Cultura Primária de Células , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Retina/crescimento & desenvolvimento , Retina/metabolismo , Transdução de Sinais , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra
8.
PLoS One ; 12(3): e0172947, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28253350

RESUMO

The development of functional peripheral ganglia requires a balance of specification of both neuronal and glial components. In the developing dorsal root ganglia (DRGs), these components form from partially-restricted bipotent neuroglial precursors derived from the neural crest. Work in mouse and chick has identified several factors, including Delta/Notch signaling, required for specification of a balance of these components. We have previously shown in zebrafish that the Sry-related HMG domain transcription factor, Sox10, plays an unexpected, but crucial, role in sensory neuron fate specification in vivo. In the same study we described a novel Sox10 mutant allele, sox10baz1, in which sensory neuron numbers are elevated above those of wild-types. Here we investigate the origin of this neurogenic phenotype. We demonstrate that the supernumerary neurons are sensory neurons, and that enteric and sympathetic neurons are almost absent just as in classical sox10 null alleles; peripheral glial development is also severely abrogated in a manner similar to other sox10 mutant alleles. Examination of proliferation and apoptosis in the developing DRG reveals very low levels of both processes in wild-type and sox10baz1, excluding changes in the balance of these as an explanation for the overproduction of sensory neurons. Using chemical inhibition of Delta-Notch-Notch signaling we demonstrate that in embryonic zebrafish, as in mouse and chick, lateral inhibition during the phase of trunk DRG development is required to achieve a balance between glial and neuronal numbers. Importantly, however, we show that this mechanism is insufficient to explain quantitative aspects of the baz1 phenotype. The Sox10(baz1) protein shows a single amino acid substitution in the DNA binding HMG domain; structural analysis indicates that this change is likely to result in reduced flexibility in the HMG domain, consistent with sequence-specific modification of Sox10 binding to DNA. Unlike other Sox10 mutant proteins, Sox10(baz1) retains an ability to drive neurogenin1 transcription. We show that overexpression of neurogenin1 is sufficient to produce supernumerary DRG sensory neurons in a wild-type background, and can rescue the sensory neuron phenotype of sox10 morphants in a manner closely resembling the baz1 phenotype. We conclude that an imbalance of neuronal and glial fate specification results from the Sox10(baz1) protein's unique ability to drive sensory neuron specification whilst failing to drive glial development. The sox10baz1 phenotype reveals for the first time that a Notch-dependent lateral inhibition mechanism is not sufficient to fully explain the balance of neurons and glia in the developing DRGs, and that a second Sox10-dependent mechanism is necessary. Sox10 is thus a key transcription factor in achieving the balance of sensory neuronal and glial fates.


Assuntos
Gânglios Espinais/citologia , Fatores de Transcrição SOXE/fisiologia , Células-Tronco/citologia , Animais , Linhagem da Célula , Mutação , Neurônios/citologia , Receptores Notch/metabolismo , Fatores de Transcrição SOXE/genética , Transdução de Sinais , Transcrição Gênica
9.
Sci Rep ; 7: 41528, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28139691

RESUMO

RFamide neuropeptide VF (NPVF) is expressed by neurons in the hypothalamus and has been implicated in nociception, but the circuit mechanisms remain unexplored. Here, we studied the structural and functional connections from NPVF neurons to downstream targets in the context of nociception, using novel transgenic lines, optogenetics, and calcium imaging in behaving larval zebrafish. We found a specific projection from NPVF neurons to serotonergic neurons in the ventral raphe nucleus (vRN). We showed NPVF neurons and vRN are suppressed and excited by noxious stimuli, respectively. We combined optogenetics with calcium imaging and pharmacology to demonstrate that stimulation of NPVF cells suppresses neuronal activity in vRN. During noxious stimuli, serotonergic neurons activation was due to a suppression of an inhibitory NPVF-ventral raphe peptidergic projection. This study reveals a novel NPVF-vRN functional circuit modulated by noxious stimuli in vertebrates.


Assuntos
Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Nociceptividade , Núcleos da Rafe/metabolismo , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Neurônios/metabolismo , Neuropeptídeos/química , Serotonina/metabolismo
10.
PLoS One ; 11(7): e0158210, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27387288

RESUMO

The habenulae are highly conserved nuclei in the dorsal diencephalon that connect the forebrain to the midbrain and hindbrain. These nuclei have been implicated in a broad variety of behaviours in humans, primates, rodents and zebrafish. Despite this, the molecular mechanisms that control the genesis and differentiation of neural progenitors in the habenulae remain relatively unknown. We have previously shown that, in zebrafish, the timing of habenular neurogenesis is left-right asymmetric and that in the absence of Nodal signalling this asymmetry is lost. Here, we show that habenular neurogenesis requires the homeobox transcription factor Pax6a and the redundant action of two proneural bHLH factors, Neurog1 and Neurod4. We present evidence that Hedgehog signalling is required for the expression of pax6a, which is in turn necessary for the expression of neurog1 and neurod4. Finally, we demonstrate by pharmacological inhibition that Hedgehog signalling is required continuously during habenular neurogenesis and by cell transplantation experiments that pathway activation is required cell autonomously. Our data sheds light on the mechanism underlying habenular development that may provide insights into how Nodal signalling imposes asymmetry on the timing of habenular neurogenesis.


Assuntos
Habenula/embriologia , Proteínas Hedgehog/fisiologia , Neurogênese , Fator de Transcrição PAX6/fisiologia , Transdução de Sinais , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Heterozigoto , Mutação , Proteínas do Tecido Nervoso/fisiologia , Neurônios/metabolismo , Reação em Cadeia da Polimerase , Fatores de Transcrição/metabolismo
11.
Nat Neurosci ; 16(7): 884-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23685722

RESUMO

The vertebrate brain is anatomically and functionally asymmetric. The left and right cerebral hemispheres harbor neural stem cell niches at the ventricular-subventricular zone (V-SVZ) of the ventricular walls, where new neurons are continuously generated throughout life. However, any interhemispheric asymmetry of neural stem cell niches remains unclear. We performed gene-trap screens in adult zebrafish to identify genes that are differentially expressed in the two hemispheres and found that adult-born neurons expressing the neural zinc-finger protein Myt1 exist predominantly in the left V-SVZ. This lateralization could be reversed by left olfactory sensory deprivation-induced inactivation of Notch signaling. The olfactory behavioral preference for attractive amino acids was also impaired by sensory deprivation of the left olfactory system, but not of the right olfactory system. Our findings suggest that olfactory input generates interhemispheric differences in the fate of adult-born neurons in the zebrafish brain.


Assuntos
Lateralidade Funcional/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/citologia , Condutos Olfatórios/fisiologia , Fatores Etários , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Animais , Animais Geneticamente Modificados , Ablação por Cateter , Ventrículos Cerebrais/metabolismo , Dipeptídeos/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Epitélio/lesões , Epitélio/fisiologia , Lateralidade Funcional/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Injeções Intraventriculares , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Odorantes , Bulbo Olfatório/fisiologia , Condutos Olfatórios/citologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
12.
Development ; 138(21): 4753-62, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21965609

RESUMO

Little is known about proneural gene function during olfactory neurogenesis in zebrafish. Here, we show that the zebrafish Atonal genes neurogenin1 (neurog1) and neurod4 are redundantly required for development of both early-born olfactory neurons (EONs) and later-born olfactory sensory neurons (OSNs). We show that neurod4 expression is initially absent in neurog1 mutant embryos but recovers and is sufficient for the delayed development of OSN. By contrast, EON numbers are significantly reduced in neurog1 mutant embryos despite the recovery of neurod4 expression. Our results suggest that a shortened time window for EON development causes this reduction; the last S-phase of EON is delayed in neurog1 mutant embryos but mutant EONs are all post-mitotic at the same stage as EONs in wild-type embryos. Finally, we show that expression of certain genes, such as robo2, is never detected in neurog1 mutant EONs. Failure of robo2 expression to recover correlates with defects in the fasciculation of neurog1 mutant olfactory axonal projections and in the organisation of proto-glomeruli because projections arrive at the olfactory bulb that are reminiscent of those in robo2 mutant embryos. We conclude that the duration of proneural expression in EON progenitors is crucial for correct development of the zebrafish olfactory system.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Neurogênese/fisiologia , Neurônios/fisiologia , Condutos Olfatórios/fisiologia , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Condutos Olfatórios/anatomia & histologia , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
13.
Dev Biol ; 350(1): 198-207, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21034732

RESUMO

Proneural genes encode bHLH transcription factors that are key regulator of neurogenesis in both vertebrates and invertebrates. How these transcription factors regulate targets required for neural determination and/or specification is beginning to be understood. In this study, we show that zebrafish deltaA is a transcriptional target of proneural factors. Using a combination of transient and stable transgenic reporters, we show that regulation of deltaA by one such proneural factor, Ngn1, requires three clustered E-box binding sites that act in a non-redundant manner. Furthermore, we show that as for other proneural targets, members of the different proneural families regulate deltaA expression via distinct cis-regulatory modules (CRMs). Interestingly, however, while the deltaA CRM regulated by a second proneural factor, Ascl1, has been conserved between delta genes of different species, we show that the Ngn1 CRM has not. These results suggest that evolutionary constraints on the mechanism by which Ngn1 regulates gene expression appear less strict than for Ascl1.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sítios de Ligação , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Transcrição Gênica , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
14.
J Neurosci ; 30(23): 7961-74, 2010 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-20534844

RESUMO

The limited generation of neurons during adulthood is controlled by a balance between quiescence and recruitment of neural stem cells (NSCs). We use here the germinal zone of the zebrafish adult telencephalon to examine how the frequency of NSC divisions is regulated. We show, using several in vivo techniques, that progenitors transit back and forth between the quiescent and dividing state, according to varying levels of Notch activity: Notch induction drives progenitors into quiescence, whereas blocking Notch massively reinitiates NSC division and subsequent commitment toward becoming neurons. Notch activation appears predominantly triggered by newly recruited progenitors onto their neighbors, suggesting an involvement of Notch in a self-limiting mechanism, once neurogenesis is started. These results identify for the first time a lateral inhibition-like mechanism in the context of adult neurogenesis and suggest that the equilibrium between quiescence and neurogenesis in the adult brain is controlled by fluctuations of Notch activity, thereby regulating the amount of adult-born neurons.


Assuntos
Células-Tronco Adultas/metabolismo , Diferenciação Celular/fisiologia , Neurogênese/fisiologia , Neurônios/metabolismo , Receptores Notch/metabolismo , Telencéfalo/citologia , Animais , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/genética , Proteínas S100/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...