Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(8): e28388, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38638992

RESUMO

Carbon nanotube (CNT) reinforcement can lead to a new way to enhance the properties of composites by transforming the reinforcement phases into nanoscale fillers. In this study, the buckling response of functionally graded CNT-reinforced composite (FG-CNTRC) sandwich beams was investigated experimentally and analytically. The top and bottom plates of the sandwich beams were composed of carbon fiber laminated composite layers and hard core. The hard core was made of a pultruded glass fiber-reinforced polymer (GFRP) profile. The layers of FG-CNTRC surfaces were reinforced with different proportions of CNT. The reference sample was made of only a pultruded GFRP profile. In the study, the reference sample and four samples with CNT were tested under compression. The largest buckling load difference between the reference sample and the sample with CNT was 37.7%. The difference between the analytical calculation results and experimental results was obtained with an approximation of 0.49%-4.92%. Finally, the buckling, debonding, interlaminar cracks, and fiber breakage were observed in the samples.

2.
Materials (Basel) ; 16(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049072

RESUMO

Currently, pultruded glass fibre-reinforced polymer (pGFRP) composites have been extensively applied as cross-arm structures in latticed transmission towers. These materials were chosen for their high strength-to-weight ratio and lightweight characteristics. Nevertheless, several researchers have discovered that several existing composite cross arms can decline in performance, which leads to composite failure due to creep, torsional movement, buckling, moisture, significant temperature change, and other environmental factors. This leads to the composite structure experiencing a reduced service life. To resolve this problem, several researchers have proposed to implement composite cross arms with sleeve installation, an addition of bracing systems, and the inclusion of pGFRP composite beams with the core structure in order to have a sustainable composite structure. The aforementioned improvements in these composite structures provide superior performance under mechanical duress by having better stiffness, superiority in flexural behaviour, enhanced energy absorption, and improved load-carrying capacity. Even though there is a deficiency in the previous literature on this matter, several established works on the enhancement of composite cross-arm structures and beams have been applied. Thus, this review articles delivers on a state-of-the-art review on the design improvement and mechanical properties of composite cross-arm structures in experimental and computational simulation approaches.

3.
Materials (Basel) ; 16(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36984100

RESUMO

In this study, the main goal of this study was to understand the effect of carbon nanotube (CNT) additives on the elastic behaviors of textile-based composites. The materials have three phases: carbon fiber fabric, epoxy matrix, and carbon nanotubes. Different weight fractions of CNTs were used (0% as a reference, 0.3%). Mechanical tests were performed, such as tension and three-point bending beam tests. In addition, the composite material damages were examined in detail. The experimental results show that the samples with CNT carried 9% and 23% more axial tensile force and bending capacity on average than those with NEAT. Besides, it was understood that adding 0.3% by weight of MWCNT increases the tensile modulus by approximately 9%. Finally, the mechanical tensile and bending tests are supported by analytical solutions successfully applied in the literature.

4.
Materials (Basel) ; 16(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36837376

RESUMO

Fibre-reinforced polymer (FRP) composites have been selected as an alternative to conventional wooden timber cross arms. The advantages of FRP composites include a high strength-to-weight ratio, lightweight, ease of production, as well as optimal mechanical performance. Since a non-conductive cross arm structure is exposed to constant loading for a very long time, creep is one of the main factors that cause structural failure. In this state, the structure experiences creep deformation, which can result in serviceability problems, stress redistribution, pre-stress loss, and the failure of structural elements. These issues can be resolved by assessing the creep trends and properties of the structure, which can forecast its serviceability and long-term mechanical performance. Hence, the principles, approaches, and characteristics of creep are used to comprehend and analyse the behaviour of wood and composite cantilever structures under long-term loads. The development of appropriate creep methods and approaches to non-conductive cross arm construction is given particular attention in this literature review, including suitable mitigation strategies such as sleeve installation, the addition of bracing systems, and the inclusion of cross arm beams in the core structure. Thus, this article delivers a state-of-the-art review of creep properties, as well as an analysis of non-conductive cross arm structures using experimental approaches. Additionally, this review highlights future developments and progress in cross arm studies.

5.
Materials (Basel) ; 16(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36676354

RESUMO

The aim of this article was to investigate the effect of carbon nanotubes (CNTs) on the buckling behavior of fiber-reinforced polymer (FRP) composites. The materials used included three layers: carbon-fiber-reinforced polymer (CFRP), epoxy and CNTs. A set of mechanical tests, such as compression and buckling tests, was performed, and also analytical solutions were developed. Damage analysis was also carried out by controlling the damage initiation and crack progression on the composite samples. Experimental results revealed that using 0.3% with CNT additives enhanced the buckling performance of the composite. Finally, the average load-carrying capacity for the clamped-clamped boundary condition was 268% higher in the CNT samples and 282% higher in the NEAT samples compared to the simple-simple condition.

6.
Polymers (Basel) ; 14(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36365561

RESUMO

Pultruded fiber-reinforced polymer (PFRP) profiles have started to find widespread use in the structure industry. The position of the web openings on these elements, which are especially exposed to axial pressure force, causes a change in the behavior. In this study, a total of 21 pultruded box profiles were tested under vertical loads and some of them were strengthened with carbon-FRP (CFRP) and glass-FRP (GFRP). The location, number and reinforcement type of the web openings on the profiles were taken into account as parameters. As a result of the axial test, it was understood that when a hole with a certain diameter is to be drilled on the profile, its position and number are very important. The height-centered openings in the middle of the web had the least effect on the reduction in the load-carrying capacity and the stability of the profile. In addition, it has been determined that the web openings away from the center and especially the eccentric opening significantly reduces the load carrying capacity. Furthermore, when double holes were drilled close to each other, a significant decrease in the capacity was observed and strengthening had the least effect on these specimens. It was also determined that the specimens reinforced with carbon FRP contribute more to the load-carrying capacity than GFRP.

7.
Polymers (Basel) ; 14(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36236043

RESUMO

Web openings often need to be created in structural elements for the passage of utility ducts and/or pipes. Such web openings reduce the cross-sectional area of the structural element in the affected region, leading to a decrease in its load-carrying capacity and stiffness. This paper experimentally studies the effect of web openings on the response of pultruded fiber-reinforced polymer (PFRP) composite profiles under compressive loads. A number of specimens have been processed to examine the behavior of PFRP profiles strengthened with one or more web openings. The effects of the size of the web opening and the FRP-strengthening scheme on the structural performance of PFRP profiles with FRP-strengthened web openings have been thoroughly analyzed and discussed. The decrease in load-carrying capacity of un-strengthened specimens varies between 7.9% and 66.4%, depending on the diameter of the web holes. It is observed that the diameter of the hole and the type of CFRP- or GFRP-strengthening method applied are very important parameters. All CFRP- and GFRP-strengthening alternatives were successful in the PFRP profiles, with diameter-to-width (D/W) ratios between 0.29 and 0.68. In addition, the load-carrying capacity after reinforcements made with CFRP and GFRP increased by 3.1-30.2% and 1.7-19.7%, respectively. Therefore, the pultruded profiles with openings are able to compensate for the reduction in load-carrying capacity due to holes, up to a D/W ratio of 0.32. The capacity significantly drops after a D/W ratio of 0.32. Moreover, the pultruded profile with CFRP wrapping is more likely to improve the load-carrying capacity compared to other wrappings. As a result, CFRP are recommended as preferred composite materials for strengthening alternatives.

8.
Polymers (Basel) ; 14(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36145884

RESUMO

The application of pultruded fiber reinforced polymer (FRP) composites in civil engineering is increasing as a high-performance structural element or reinforcing material for rehabilitation purposes. The advantageous aspects of the pultrusion production technique and the weaknesses arising from the 0° fiber orientation in the drawing direction should be considered. In this direction, it is thought that the structural performance of the profiles produced by the pultrusion technique can be increased with 90° windings by using different fiber types. This paper presents experimental studies on the effect of FRP composite wrapping on the flexure performance of reinforced concrete (RC) filled pultruded glass-FRP (GFRP) profile hybrid beams with damage analysis. The hybrid beams are wrapped fully and partially with Glass fiber reinforced polymer (GFRP) and carbon fiber reinforced polymer (CFRP) composites. Hybrid beam specimens with 0° to 90° fiber orientations were tested under three- and four-point bending loads. Based on the experimental load-displacement relationship results, initial stiffness, ductility, and energy dissipation capacity were compared. The experimental findings revealed that the maximum load-carrying capacities of beams produced with pultrude profiles increased by 24% with glass wrapping and 64.4% with carbon wrapping due to the change in the damages. A detailed damage analysis is provided. Similarly, significant increases were observed in structural performance ratios such as initial stiffness and ductility ratio.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...