Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Rev Camb Philos Soc ; 89(3): 618-55, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24299058

RESUMO

For over a century, frogs have been studied across various scientific fields, including physiology, embryology, neuroscience, (neuro)endocrinology, ecology, genetics, behavioural science, evolution, drug development, and conservation biology. In some cases, frog skin has proven very successful as a research model, for example aiding in the study of ion transport through tight epithelia, where it has served as a model for the vertebrate distal renal tubule and mammalian epithelia. However, it has rarely been considered in comparative studies involving human skin. Yet, despite certain notable adaptations that have enabled frogs to survive in both aquatic and terrestrial environments, frog skin has many features in common with human skin. Here we present a comprehensive overview of frog (and toad) skin ontogeny, anatomy, cytology, neuroendocrinology and immunology, with special attention to its unique adaptations as well as to its similarities with the mammalian integument, including human skin. We hope to provide a valuable reference point and a source of inspiration for both amphibian investigators and mammalian researchers studying the structural and functional properties of the largest organ of the vertebrate body.


Assuntos
Anuros/fisiologia , Fenômenos Fisiológicos da Pele , Animais , Humanos
2.
Exp Dermatol ; 19(4): 313-24, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20158518

RESUMO

Fish skin is a multi-purpose tissue that serves numerous vital functions including chemical and physical protection, sensory activity, behavioural purposes or hormone metabolism. Further, it is an important first-line defense system against pathogens, as fish are continuously exposed to multiple microbial challenges in their aquatic habitat. Fish skin excels in highly developed antimicrobial features, many of which have been preserved throughout evolution, and infection defense principles employed by piscine skin are still operative in human skin. This review argues that it is both rewarding and important for investigative dermatologists to revive their interest in fish skin biology, as it provides insights into numerous fundamental issues that are of major relevance to mammalian skin. The basic molecular insights provided by zebrafish in vivo-genomics for genetic, regeneration and melanoma research, the complex antimicrobial defense systems of fish skin and the molecular controls of melanocyte stem cells are just some of the fascinating examples that illustrate the multiple potential uses of fish skin models in investigative dermatology. We synthesize the essentials of fish skin biology and highlight selected aspects that are of particular comparative interest to basic and clinically applied human skin research.


Assuntos
Dermatologia , Peixes/fisiologia , Fenômenos Fisiológicos da Pele , Pele , Animais , Dermatologia/métodos , Peixes/microbiologia , Humanos , Modelos Animais , Pele/citologia , Pele/imunologia , Pele/microbiologia
3.
J Morphol ; 270(10): 1166-208, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19396862

RESUMO

Understanding of the regeneration of feathers, despite a 140 year tradition of study, has remained substantially incomplete. Moreover, accumulated errors and mis-statements in the literature have confounded the intrinsic difficulties in describing feather regeneration. Lack of allusion to Rudall's (Rudall [1947] Biochem Biophys Acta 1:549-562) seminal X-ray diffraction study that revealed two distinct keratins, beta- and alpha-, in a mature feather, is one of the several examples where lack of citation long inhibited progress in understanding. This article reviews and reevaluates the available literature and provides a synthetic, comprehensive, morphological model for the regeneration of a generalized, adult contour feather. Particular attention is paid to several features that have previously been largely ignored. Some of these, such as the beta-keratogenic sheath and the alpha-keratogenic, supra-umbilical, pulp caps, are missing from mature, functional feathers sensu stricto because they are lost through preening, but these structures nevertheless play a critical role in development. A new developmental role for a tissue unique to feathers, the medullary pith of the rachis and barb rami, and especially its importance in the genesis of the superior umbilical region (SUR) that forms the transition from the spathe (rachis and vanes) to the calamus, is described. It is postulated that feathers form through an intricate interplay between cyto- and histodifferentiative processes, determined by patterning signals that emanate from the dermal core, and a suite of interacting biomechanical forces. Precisely regulated patterns of loss of intercellular adhesivity appear to be the most fundamental aspect of feather morphogenesis and regeneration: rather than a hierarchically branched structure, it appears more appropriate to conceive of feathers as a sheet of mature keratinocytes that is "full of holes.


Assuntos
Plumas/anatomia & histologia , Plumas/fisiologia , Regeneração , Animais , Aves , Plumas/ultraestrutura , Queratinas/metabolismo , Microscopia Eletrônica de Varredura
4.
Differentiation ; 72(9-10): 466-73, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15617559

RESUMO

A review of major studies of tetrapod skin development since the 1870s illustrates how knowledge of structure and mechanism progressed through phases emphasizing Natural History, morphology, endocrinology, and tissue manipulation prior to the prevailing "molecular era." Each successive phase of investigation, while suffering from its own limitations and constraints, has produced conceptual advances. At various times, different systems in various organisms have been research models of choice for practical and/or technical reasons. Comparative studies of scaled and non-scaled integuments and appendages thereof, e.g., nails, claws, glands, hair, and especially feathers, revealed data that suggested new directions for research programs. Some non-mammalian models still offer unique opportunities for pursuit of specific questions pertinent to studies of hair: arguments between American and British schools concerning feather development that originated in the 1930s remain unresolved and may thus affect interpretation of recent investigations. The current emphasis on the study of diffusible molecules involved in papilla-follicle interactions in hair development and replacement can only be understood in the context of the interwoven history of questions relating sequentially to evolutionary homology, physiological controls of tissue homeostasis, embryonic induction, and, most recently, molecular genetics.


Assuntos
Folículo Piloso/embriologia , Folículo Piloso/crescimento & desenvolvimento , Animais , Indução Embrionária , Plumas/embriologia , Plumas/crescimento & desenvolvimento , História do Século XX , Humanos , Biologia Molecular , Pele/embriologia , Pele/crescimento & desenvolvimento
5.
J Morphol ; 258(1): 49-66, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12905534

RESUMO

The expression of acidic and basic keratins, and of some keratinization marker proteins such as filaggrin, loricrin, involucrin, and trichohyalin, is known for the epidermis of only a few eutherian species. Using light and high-resolution immunocytochemistry, the presence of these proteins has been studied in two monotreme and five marsupial species and compared to that in eutherians. In both monotreme and marsupial epidermis lamellar bodies occur in the upper spinosus and granular layers. Development of the granular layer varies between species and regionally within species. There is great interspecific variation in the size (0.1-3.0 microm) of keratohyalin granules (KHGs) associated with production of orthokeratotic corneous tissues. Those skin regions lacking hairs (platypus web), or showing reduced pelage density (wombat) have, respectively, minute or indiscernible KHGs, associated with patchy, or total, parakeratosis. Ultrastructural analysis shows that monotreme and marsupial KHGs comprise irregular coarse filaments of 25-40 nm that contact keratin filaments. Except for parakeratotic tissues of platypus web, distribution of acidic and basic proteins in monotreme and marsupial epidermis as revealed by anti-keratin antibodies AE1, AE2, and AE3 resembles that of eutherian epidermis. Antibodies against human or rat filaggrins have little or no cross-reactivity with epidermal proteins of other mammals: only sparse areas of wombat and rabbit epidermis show a weak immunofluorescence in transitional cells and in the deepest corneous tissues. Of the available, eutherian-derived antibodies, that against involucrin shows no cross-reactivity with any monotreme and marsupial epidermal tissues and that against trichohyalin cross-reacts only with cells in the inner root sheath and medulla of hairs. These results suggest that if involucrin and trichohyalin are present throughout noneutherian epidermis, they may have species-specific molecular structures. By contrast, eutherian-derived anti-loricrin antibodies show a weak to intense cross-reactivity to KHGs and corneous tissues of both orthokeratotic and parakeratotic epidermis in monotremes and marsupials. High-resolution immunogold analysis of loricrin distribution in immature keratinocytes of platypus parakeratotic web epidermis identifies labeled areas of round or irregular, electron-pale granules within the denser keratohyalin component and keratin network. In the deepest mature tissues, loricrin-like labeling is diffuse throughout the cytoplasm, so that cells lack the preferential distribution of loricrin along the corneous envelope that characterizes mature eutherian keratinocytes. Thus, the irregular distribution of loricrin in platypus parakeratotic tissues more resembles that which has been described for reptilian and avian keratinocytes. These observations on the noneutherian epidermis show that a stratum granulosum is present to different degrees, even discontinuous within one tissue, so that parakeratotic and orthokeratotic areas may alternate: this might imply that parakeratotic monotreme epidermis reflects the primitive pattern of amniote alpha-keratogenesis. Absent from anamniote epidermis and all sauropsid beta-keratogenic tissues, the ubiquitous presence of a loricrin-like protein as a major component of other amniote corneous tissues suggests that this is a primitive feature of amniote alpha-keratogenesis. The apparent lack of specific regionalization of loricin near the plasma membranes of monotreme keratinocytes could be an artifactual result of the immunofluorescence technique employed, or there may be masking of the antigenicity of loricrin-like proteins once they are incorporated into the corneous envelope. Nevertheless, the mechanism of redistribution of such proteins during maturation of monotreme keratinocytes is different from, perhaps more primitive, or less specialized, than that in the epidermis of eutherian mammals.


Assuntos
Epiderme/metabolismo , Queratinas/metabolismo , Marsupiais/metabolismo , Monotremados/metabolismo , Animais , Evolução Biológica , Epiderme/ultraestrutura , Proteínas Filagrinas , Humanos , Imuno-Histoquímica , Proteínas de Filamentos Intermediários/metabolismo , Marsupiais/anatomia & histologia , Proteínas de Membrana/metabolismo , Monotremados/anatomia & histologia , Precursores de Proteínas/metabolismo , Coelhos , Ratos
6.
J Morphol ; 256(2): 111-33, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12635105

RESUMO

Histochemical and TEM analysis of the epidermis of Sphenodon punctatus confirms previous histological studies showing that skin-shedding in this relic species involves the periodic production and loss of epidermal generations, as has been well documented in the related Squamata. The generations are basically similar to those that have been described in the latter, and their formation involves a cyclic alternation between beta- and alpha-keratogenesis. The six differences from the previously described squamate condition revealed by this study include: 1) the absence of a well-defined shedding complex; 2) the persistence of plasma membranes throughout the mature beta-layer, including the oberhautchen; 3) the concomitant presence of lipogenic lamellar bodies and PAS-positive mucous granules in most presumptive alpha-keratinizing cells; 4) the presence of the secreted contents of these organelles in the intercellular domains of the three derived tissues, the homologues of the squamate mesos, alpha-, and lacunar cells; 5) the paucity of lamellated lipid deposits in such domains; 6) the presence of keratohyalin-like granules (KHLG) in the presumptive lacunar, clear, and oberhautchen cells. In toto, the absence of many of the precisely definable, different pathways of cytogenesis discernible during squamate epidermal generation production might be interpreted as primitive for lepidosaurs. However, when the evolutionary significance of each of the six differences listed is evaluated separately, it becomes clear that the epidermis of S. punctatus possesses primitive amniote, shared and derived lepidosaurian, and some unique characters. This evaluation further elucidates the concept of a lepidosaurian epidermal generation as a derived manifestation of the sauropsid synapomorphy of vertical alternation of keratin synthesis and shows that further study of keratinocyte differentiation in the tuatara may contribute to our understanding of the origin and evolution of beta-keratinization in sauropsid amniotes.


Assuntos
Evolução Biológica , Epiderme/ultraestrutura , Lagartos/anatomia & histologia , Animais , Diferenciação Celular , Epiderme/crescimento & desenvolvimento , Queratinócitos/ultraestrutura , Lagartos/fisiologia , Microscopia Eletrônica , Nova Zelândia , Fenômenos Fisiológicos da Pele
7.
J Morphol ; 256(2): 134-45, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12635106

RESUMO

Study of the histology, histochemistry, and fine structure of caudal epidermal regeneration in Sphenodon punctatus through restoration of a scaled form reveals that the processes involved resemble those known in lizards. Following establishment of a wound epithelium (WE), subjacent scale neogenesis involves epidermal downgrowths into the dermis. Although the process is extremely slow, and most new scales do not overlap, their epidermal coverings reestablish epidermal generation (EG) formation. As in lizards, the flat, alpha-keratogenic, WE cells contain lipids as revealed by their affinity for Sudan III. A few mucous cells that store large PAS-positive mucus-like granules also occur in WE. During differentiation of WE cells, among the bundles of 70-nm tonofilaments are many lamellar bodies (LBs) and mucous granules (MGs) that discharge their contents into the cytoplasm and extracellular spaces producing a strongly PAS-positive keratinized tissue. Richness of epidermal lipids coexistent with mucus is a primitive characteristic for amniote vertebrates, probably related to functions as a barrier to cutaneous water loss (CWL). As scale neogenesis begins, beneath the superficial WE appear 3-5 layers of irregularly shaped cells. These contain tonofilament bundles surrounded by small, round keratohyalin-like granules (KHLGs) and a keratinized matrix with beta-keratin packets and a 3-5-nm thick keratin granulation. This mixture of alpha- and beta-keratogenic capacities resembles that seen in the innermost cells of a normal tuatara epidermal generation. As in the latter, but in contrast to both normal and regenerating lizard epidermis, no definable shedding complex with interdigitating clear layer and oberhautchen cells occurs (Alibardi and Maderson, 2003). The tortuous boundaries, and merging beta-keratin packets, identify subjacent keratinizing cells as precursors of the typical stratified, squamous beta-layer seen in long-term regenerated caudal skin wherein the entire vertical sequence of epidermal layers resembles that of normal scales. The sequence of events in caudal epidermal regeneration in S. punctatus resembles that documented for lizards. Observed differences between posttrauma scale neogenesis and scale embryogenesis are responses to functional problems involved in, respectively, restoring, or forming, a barrier to CWL while accommodating rapid somatic growth.


Assuntos
Epiderme/ultraestrutura , Lagartos/anatomia & histologia , Regeneração/fisiologia , Animais , Diferenciação Celular/fisiologia , Epiderme/fisiologia , Queratinócitos/ultraestrutura , Lagartos/fisiologia , Microscopia Eletrônica , Nova Zelândia , Cauda/anatomia & histologia , Cauda/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...