Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 286(27): 24519-33, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21606502

RESUMO

Connexins are the transmembrane proteins that form gap junctions between adjacent cells. The function of the diverse connexin molecules is related to their tissue-specific expression and highly dynamic turnover. Although multiple connexins have been previously reported to compensate for each other's functions, little is known about how connexins influence their own expression or intracellular regulation. Of the three vertebrate lens connexins, two connexins, connexin43 (Cx43) and connexin46 (Cx46), show reciprocal expression and subsequent function in the lens and in lens cell culture. In this study, we investigate the reciprocal relationship between the expression of Cx43 and Cx46. Forced depletion of Cx43, by tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate, is associated with an up-regulation of Cx46 at both the protein and message level in human lens epithelial cells. An siRNA-mediated down-regulation of Cx43 results in an increase in the level of Cx46 protein, suggesting endogenous Cx43 is involved in the regulation of endogenous Cx46 turnover. Overexpression of Cx46, in turn, induces the depletion of Cx43 in rabbit lens epithelial cells. Cx46-induced Cx43 degradation is likely mediated by the ubiquitin-proteasome pathway, as (i) treatment with proteasome inhibitors restores the Cx43 protein level and (ii) there is an increase in Cx43 ubiquitin conjugation in Cx46-overexpressing cells. We also present data that shows that the C-terminal intracellular tail domain of Cx46 is essential to induce degradation of Cx43. Therefore, our study shows that Cx43 and Cx46 have novel functions in regulating each other's expression and turnover in a reciprocal manner in addition to their conventional roles as gap junction proteins in lens cells.


Assuntos
Conexina 43/biossíntese , Conexinas/biossíntese , Células Epiteliais/metabolismo , Junções Comunicantes/metabolismo , Regulação da Expressão Gênica/fisiologia , Cristalino/metabolismo , Animais , Carcinógenos/farmacologia , Células Cultivadas , Conexina 43/genética , Conexinas/genética , Células Epiteliais/citologia , Junções Comunicantes/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Cristalino/citologia , Coelhos , Ratos , Acetato de Tetradecanoilforbol/farmacologia
2.
Int J Cancer ; 127(4): 839-48, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20013805

RESUMO

Connexin proteins are the principle structural components of the gap junctions. Colocalization and tissue-specific expression of diverse connexin molecules are reported to occur in a variety of organs. Impairment of gap junctional intercellular communication, caused by mutations, gain of function or loss of function of connexins, is involved in a number of diseases including the development of cancer. Here we show that human breast cancer cells, MCF-7 and breast tumor tissues express a novel gap junction protein, connexin46 (Cx46) and it plays a critical role in hypoxia. Previous studies have shown that connexin46 is predominantly expressed in lens and our studies find that Cx46 protects human lens epithelial cells from hypoxia induced death. Interestingly, we find that Cx46 is upregulated in MCF-7 breast cancer cells and human breast cancer tumors. Downregulation of Cx46 by siRNA promotes 40% MCF-7 cell death at 24 hr under hypoxic conditions. Furthermore, direct injection of anti-Cx46 siRNA into xenograft tumors prevents tumor growth in nude mice. This finding will provide an exciting new direction for drug development for breast cancer treatment and suggests that both normal hypoxic tissue (lens) and adaptive hypoxic tissue (breast tumor) utilize the same protein, Cx46, as a protective strategy from hypoxia.


Assuntos
Neoplasias da Mama/prevenção & controle , Conexinas/fisiologia , Hipóxia/metabolismo , Adulto , Animais , Apoptose , Western Blotting , Neoplasias da Mama/metabolismo , Proliferação de Células , Sobrevivência Celular , Células Epiteliais/metabolismo , Feminino , Junções Comunicantes , Humanos , Técnicas Imunoenzimáticas , Cristalino/metabolismo , Camundongos , Camundongos Nus , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Células Tumorais Cultivadas , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...