Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 349: 140969, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38114024

RESUMO

Employing an affordable and sustainable visible-light-driven system is crucial for organic pollutant abatement, in the field of photocatalysis. In the present investigation, a pioneering photocatalyst zinc indium sulphide, ZnIn2S4 (ZIS) supported on a silica gel matrix, SiO2 (SG) which is the leftover material after multiple rounds of dehumidification processes, was synthesized. The fabrication of the heterojunction facilitated enhancement in light absorption and charge separation efficiency. The photocatalytic performance was evaluated through the degradation of tetracycline (TC) under light irradiation. The nano-photocatalyst experienced detailed analysis using spectroscopic and microscopic methods. The ZIS/SG catalyst exhibited remarkable efficiency in degrading TC under visible light conditions, achieving a nearly 98-99% degradation. This performance surpassed the degradation rates of the original ZIS and SG catalysts by 3.6 and 4.45 times, respectively. Additionally, the catalyst was effectively used to control TC levels in real-time within pharmaceutical plant effluent, resulting in a degradation efficiency of 78.2%. With affordability, enhanced TC mineralization, and recyclability for up to six runs (efficiency ∼ 85%), the ZIS/SG photocatalyst exhibits desirable qualities of an ideal one. This innovative nano-photocatalyst introduces new possibilities for improving the process of photocatalytic decontamination of tenacious emerging pollutants by providing satisfactory reusability and stability.


Assuntos
Poluentes Ambientais , Compostos Heterocíclicos , Higroscópicos , Índio , Dióxido de Silício , Tetraciclina , Antibacterianos , Luz , Zinco , Catálise
2.
Environ Sci Pollut Res Int ; 30(14): 41095-41106, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36630043

RESUMO

Photocatalysis is one of the fascinating fields for the wastewater treatment. In this regard, the present study deals with an effective visible light active BiYO3/g-C3N4 heterojunction nanocomposite photocatalyst with various ratios of BiYO3 and g-C3N4 (1:3, 1:1 and 3:1), synthesised by a wet chemical approach. The as-synthesised nanocomposite photocatalysts were investigated via different physicochemical approaches like Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electrons microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and photoelectrochemical studies to characterise the crystal structure, morphology, optical absorption characteristics and photoelectrochemical properties. The photocatalytic degradation ability of the prepared photocatalytic samples was also analysed through the degradation of RhB in the presence of visible light irradiation. Of all the synthesised photocatalysts, the optimised CB-1 composite showed a significant photocatalytic efficiency (88.7%), with excellent stability and recyclability after three cycles. O2•- and •OH radicals were found to act a major role in the RhB degradation using optimised CB-1 composite, and it possessed ~ 1 times greater photocurrent intensity than the pristine g-C3N4 and BiYO3. In the present work, a direct Z-scheme heterojunction BiYO3/g-C3N4 with a considerably improved photocatalytic performance is reported.


Assuntos
Luz , Espectroscopia de Infravermelho com Transformada de Fourier , Catálise , Microscopia Eletrônica de Transmissão , Microscopia Eletrônica de Varredura
3.
Environ Sci Pollut Res Int ; 30(14): 40174-40188, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36607582

RESUMO

This investigation reports the synthesis of ZnO nanoparticles from various sources of zinc salts via a microwave-assisted method. Furthermore, the synthesized ZnO nanoparticles were capped with different capping agents such as sodium hexametaphosphate (SHMP), polyvinylpyrrolidone (PVP), and cetylpyridinium chloride (CPC) to examine the stability and characteristics of ZnO nanoparticles. The synthesized ZnO nanoparticles were characterized with sophisticated analytical techniques such as XRD, FTIR, SEM, UV-vis DRS, Raman, and PL to understand their properties. From these studies, the XRD depicts the decrease in crystallinity of ZnO nanoparticles with the addition of different capping agents, and the morphology of the ZnO nanoparticles was influenced by capping agents as evidenced by SEM. The band gap of the synthesized ZnO nanoparticles is found to decrease with different capping agents confirmed by UV-Vis DRS studies. Furthermore, the photocatalytic degradation performance of the prepared samples is assessed by the degradation of methylene blue under visible light irradiation. The ZnO nanoparticles synthesized from the Zinc nitrate source with SHMP capping agent show a greater extent of photocatalytic degradation efficiency than other Zinc sources. After 60 min of light, MB was observed to have degraded by about 80%, and hence, zinc nitrate is a suitable source to synthesize ZnO.


Assuntos
Nanopartículas , Óxido de Zinco , Micro-Ondas , Zinco
4.
Environ Sci Pollut Res Int ; 30(4): 10179-10190, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36071357

RESUMO

Construction of the Z-scheme heterojunction photocatalyst achieved highly improved photocatalytic ability by its high redox ability of the photoinduced e--h+ pairs. In the study, Z-scheme g-C3N4/BiYWO6 heterojunction photocatalyst is prepared by the single-step hydrothermal method. Further, its photocatalytic ability was assessed by degrading methylene blue under visible light exposure. Particularly, the optimized 30 wt% of g-C3N4 in the g-C3N4/BiYWO6 composite exposes almost complete degradation after 90 min, that is ~ 3.0 times greater than the bare BiYWO6 and g-C3N4 with the rate constant value 0.032 min-1. Experimentally, the radical trapping studies indicate O2·- and ·OH radicals are playing a vital role in the photocatalytic degradation process. Also, the Z-scheme g-C3N4/BiYWO6 heterojunction photocatalyst exhibits excellent photoelectrochemical property and it is stable after 5 cycles, which indicates its good reusability nature. These enhancements are due to the newly formed heterostructure that facilitates the migration and separation efficiency of the photoproduced e--h+ pairs. Hence, the synthesized Z-scheme g-C3N4/BiYWO6 heterostructure could be an excellent material for wastewater remediation works.


Assuntos
Luz , Azul de Metileno , Águas Residuárias
5.
Chemosphere ; 313: 137552, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36526136

RESUMO

A novel FeMoO4/g-C3N4-2D/2D Z-scheme heterojunction photocatalyst was prepared via wet chemical method. The observed structural morphology of FeMoO4/g-C3N4 reveals the 2D-iron molybdate (FeMoO4) nanoplates compiled with the 2D-graphitic carbon nitride (g-C3N4) nanosheets like structure. The photocatalytic activity of the g-C3N4, FeMoO4, and FeMoO4/g-C3N4 composites were studied via the degradation of Rhodamine B (RhB) as targeted textile dye under visible light irradiation (VLI). The optimal FeMoO4/g-C3N4 (1:3 ratio of g-C3N4 and FeMoO4) composite show an enhanced degradation performance with rate constant value of 0.02226 min-1 and good stability even after three cycles. Thus, the h+ and O2•-are the key radicals in the degradation of RhB under VLI. It is proposed that the FeMoO4/g-C3N4 Z-scheme heterojunction effectively enhances the transfer and separation ability of e-/h+ pairs, by the way increasing the photocatalytic efficiency towards the RhB degradation. Thus, the newly constructed Z-scheme FeMoO4/g-C3N4 heterojunction photocatalyst is a promising material for the remediation of wastewater relevant to elimination of toxic effect in marine environment.


Assuntos
Ferro , Águas Residuárias , Luz , Têxteis
6.
Environ Sci Pollut Res Int ; 30(12): 34468-34480, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36512282

RESUMO

Constructing S-scheme heterojunction between two semiconductor materials is an effective route to increase the photocatalytic degradation efficiency. Here, a novel S-scheme WS2/BiYWO6 heterojunction photocatalyst was prepared by wet chemical route. At the same time, the photocatalytic degradation performance of the fabricated materials was analyzed by the degradation of Rhodamine B under visible light. Of all prepared WS2/BiYWO6 composites, the 20 wt.% WS2 loaded WS2/BiYWO6 composite exhibited an enhanced photocatalytic degradation ability than other prepared photocatalysts. Here, O2·- and ·OH radicals are performing a pivotal role in the Rhodamine B degradation and the optimized composite shows greater photocurrent intensity than pure BiYWO6 and WS2, respectively. Also, the synthesized photocatalyst maintains its stability with negligible changes even after three cycles. Thereby, the constructed S-scheme WS2/BiYWO6 heterojunction is a potential material for the wastewater remediation.


Assuntos
Luz , Semicondutores , Eletricidade Estática , Rodaminas
7.
Chemosphere ; 308(Pt 3): 136100, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36064027

RESUMO

Photocatalysis is one of the promising method to degrade harmful organic pollutants under visible light exposure. In this work, a novel Ni3V2O8/BiVO4 nanocomposite has been prepared by one-pot hydrothermal method, and investigated through X-ray diffraction, FT-IR, UV-visible diffuse reflectance spectroscopy, scanning and transmission electron microscopy and photoluminescence techniques. Subsequently, the photocatalytic performance of Ni3V2O8/BiVO4 nanocomposite has been examined by degrading AO7 under visible light illumination. The photocatalytic efficiency of the optimized 1:2 ratio of Ni3V2O8/BiVO4 nanocomposite photocatalyst is found to be 87% with a rate constant value of 0.03387 min-1 which are higher than those of other prepared photocatalysts. This nanocomposite exhibits excellent stability even after 3 three cycles, and shows 1.135- and 1.17-times higher photocurrent intensity than pure BiVO4 and Ni3V2O8 respectively. The mechanism for the degradation of AO7 over Ni3V2O8/BiVO4 nanocomposite photocatalyst has been proposed.


Assuntos
Poluentes Ambientais , Nanotubos , Compostos Azo , Benzenossulfonatos , Bismuto/química , Catálise , Luz , Espectroscopia de Infravermelho com Transformada de Fourier , Vanadatos/química
8.
Chemosphere ; 303(Pt 2): 135070, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35643163

RESUMO

Pharmaceutical compounds in water bodies pose hazards to the ecosystem because of their biotoxicity potency. To eradicate such pharmaceutical compounds, a novel g-CN/BiOBr/Fe3O4 nanocomposites was prepared using a simplistic route and appraised for photodegradation of model tetracycline antibiotics. The g-CN/BiOBr/Fe3O4 nanocomposites exhibited complete tetracycline degradation in just 60 min exposure of simulated light irradiation, which is 6 times higher than the g-CN. Under the analogous condition, the tetracycline mineralization ability of the g-CN/BiOBr/Fe3O4 nanocomposites was evaluated to be 78% of total organic carbon removal. The superior photocatalytic performance is ascribed to the extended visible light harvesting ability and enhanced charge carrier separation/transfer with impeded recombination rate in light of effective indirect Z-scheme heterojunction construction. Based on band-edge potential and radical trapping studies indicate that h+ > â€¢O2- > â€¢OH are the active species responsible for photodegradation. Furthermore, the ternary nanocomposites are magnetically retrievable and recyclable while retaining their stable photocatalytic performance. This work endows a new perspective on the rational design and construction of magnetically recoverable ternary nanocomposite for environmental remediation.


Assuntos
Ecossistema , Nanocompostos , Antibacterianos , Bismuto , Catálise , Preparações Farmacêuticas , Tetraciclina
9.
Environ Sci Pollut Res Int ; 29(43): 65222-65232, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35484456

RESUMO

Visible light active 1D/2D-NiMoO4/BiOI nanocomposite photocatalyst has been constructed by single step solvothermal method. Various compositions of NiMoO4/BiOI nanocomposites are prepared by loading different amounts of nickel molybdate (NiMoO4) (1, 2, 3 wt%) to the bismuth oxy iodide (BiOI) and investigated by XRD, FTIR, SEM, EDAX, TEM, UV-vis DRS, and PL analysis. Among the as-prepared photocatalysts, 1 wt% NiMoO4 incorporated BiOI (NMBI-1) showed superior photocatalytic activity with a rate constant of 0.0442 min-1 for methylene blue degradation. While the bandgap values of pure BiOI and NiMoO4 are 1.94 and 2.43 eV, respectively, the optimized NMBI-1 exhibited a lower bandgap energy of 1.64 eV, and showed about 2 and 3.7 times higher photodegradation ability than the pure NiMoO4 and BiOI, respectively, towards MB removal under visible light. The NMBI-1 nanocomposite photocatalyst is stable even after four cycles, indicating an excellent photostability and recyclability. Charge carriers on the interface of NiMoO4 and BiOI easily transferred via the newly formed heterojunction, thereby increasing the photocatalytic performance. Photochemically formed h+ and.OH are found to be the major species in the MB removal under visible light illumination. Therefore, the 1D/2D-NiMoO4/BiOI nanocomposite photocatalyst materials may be considered for the wastewater remediation processes.


Assuntos
Poluentes Ambientais , Nanocompostos , Bismuto/química , Catálise , Iodetos/química , Luz , Azul de Metileno , Níquel , Águas Residuárias
10.
Sci Rep ; 12(1): 4765, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35306526

RESUMO

Mosquito borne diseases are on the rise because of their fast spread worldwide and the lack of effective treatments. Here we are focusing on the development of a novel anti-malarial and virucidal agent with biocidal effects also on its vectors. We have synthesized a new quinoline (4,7-dichloroquinoline) derivative which showed significant larvicidal and pupicidal properties against a malarial and a dengue vector and a lethal toxicity ranging from 4.408 µM/mL (first instar larvae) to 7.958 µM/mL (pupal populations) for Anopheles stephensi and 5.016 µM/mL (larva 1) to 10.669 µM/mL (pupae) for Aedes aegypti. In-vitro antiplasmodial efficacy of 4,7-dichloroquinoline revealed a significant growth inhibition of both sensitive strains of Plasmodium falciparum with IC50 values of 6.7 nM (CQ-s) and 8.5 nM (CQ-r). Chloroquine IC50 values, as control, were 23 nM (CQ-s), and 27.5 nM (CQ-r). In vivo antiplasmodial studies with P. falciparum infected mice showed an effect of 4,7-dichloroquinoline compared to chloroquine. The quinoline compound showed significant activity against the viral pathogen serotype 2 (DENV-2). In vitro conditions and the purified quinoline exhibited insignificant toxicity on the host system up to 100 µM/mL. Overall, 4,7-dichloroquinoline could provide a good anti-vectorial and anti-malarial agent.


Assuntos
Antimaláricos , Dengue , Inseticidas , Malária , Nanopartículas Metálicas , Animais , Antimaláricos/farmacologia , Cloroquina/farmacologia , Dengue/tratamento farmacológico , Inseticidas/farmacologia , Larva , Malária/tratamento farmacológico , Camundongos , Mosquitos Vetores , Extratos Vegetais/farmacologia , Pupa
11.
Chemosphere ; 297: 133993, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35189197

RESUMO

A visible light driven BiOBr/BixY1-xWO6 nanocomposite photocatalyst of various compositions are prepared by the addition of different amounts of KBr (0.5, 1.0, 1.5, 2.0 mmol) in BixY1-xWO6 by a one-pot hydrothermal method. Furthermore, the photocatalytic properties of the as-prepared materials are analyzed by the decomposition of methylene blue under visible light illumination. In particular, the BiOBr/BixY1-xWO6 nanocomposite prepared by taking 1.5 mmol of KBr present a superior photocatalytic ability (78.3%) with the rate constant value 0.016 min-1, a low bandgap (Eg = 2.51 eV) as well as photoluminescence emission intensity than other photocatalysts prepared in this study. The radical scavenging studies revealed that OH and h+ performed an imperative role in the decomposition of methylene blue. Furthermore, the optimized photocatalyst is stable even after four cycles, which exposes the excellent photostability and reusability properties of the photocatalyst. In addition, a plausible mechanism of decomposition of methylene blue under visible light irradiation is also proposed.

12.
Environ Res ; 207: 112188, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624267

RESUMO

Visible light-driven carbon-doped TiO2 supported with metal nitrate hydroxide (CT-Ni/Co/Cu) nanocomposites were prepared and characterized by various studies. It is fascinating to note that particle size of TiO2 was substantially reduced from 5 µm to 50 nm after doping of carbon which was confirmed by FESEM. Moreover, the incorporation of stable metal (Cu) nitrate hydroxide further enhanced the visible light absorption up to 800 nm as evident by UV-DRS. The carbon doping and copper nitrate formation are validated by the Ti-O-C and N-O bonds using XPS and FTIR spectra. The photocatalytic activity of as-prepared photocatalyst was tested for the tetracycline degradation (TC, 10 mg/mL) under light irradiation. Significantly, 3 wt% carbon-doped TiO2 (31CT) with Cu (II) hydroxide nitrate nanocomposite photocatalyst exhibited an excellent photocatalytic activity (97%, within 1 h), and the corresponding reaction rate was around 2 times higher than bare TiO2. The excellent photocatalytic activity of 31CT-Cu nanocomposite was due to enhanced adsorbent of TC via carbon doping, visible light absorption, improved photo-generated carrier separation and migration by metal nitrate hydroxide as a support. This work may promote the development of a new carbon-doped TiO2 supported with highly stable metal nitrate hydroxide nanocomposite by facile method and used as an efficient photocatalyst for photodegradation of environmental pollutants.


Assuntos
Carbono , Nitratos , Carbono/química , Catálise , Hidróxidos , Luz , Tetraciclina , Titânio/química
13.
Environ Res ; 200: 111365, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34033832

RESUMO

In the present work, a visible light driven AgVO3/BiOI nanocomposite photocatalyst with different wt % (1, 2, 3) of AgVO3 was fabricated by using facile hydrothermal method. Further, the nanocomposite was characterized by FT-IR, XRD, SEM, TEM, EDS, UV-vis DRS, photoluminescence and photoelectrochemical studies. The structural characterization showed nanorods on nanosheet surface. Among different AgVO3 loaded samples, the photocatalytic efficiency of 1 wt % AgVO3/BiOI nanocomposite was found to be comparatively higher than the pure BiOI and AgVO3. The photodegradation rate constant values of pure BiOI, AgVO3 and 1, 2, 3 wt % AgVO3/BiOI nanocomposites are 0.006, 0.0033, 0.0255, 0.01575, 0.0116 min-1 respectively. This enhanced photocatalytic activity was due to the increasing visible light absorption ability and efficient separation of the charge carriers. Thereby, the 1 wt % AgVO3/BiOI nanocomposite photocatalyst exhibited increased photodegradation activity, photostability and recyclability characteristics. The radical trapping experiment confirmed the role of OH and h+ in the photocatalytic degradation of RhB. Based on this, the probable mechanism of degradation of RhB under visible light irradiation has also been proposed. Hence, we believe it could be a promising material that can be employed for the photodegradation of organic pollutants present in wastewater.


Assuntos
Nanocompostos , Catálise , Luz , Rodaminas , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Environ Res ; 194: 110741, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33450234

RESUMO

The sensitive and selective detection of nitroexplosive molecules thorough a simple methodology has received a significant field of research affecting global security and public safety. In the present study, the synthesis of anthracene-based chalcone (S1) was conducted using a simple condensation method. S1 was found to exhibit unique properties, such as aggregation-induced emission in solution and mechanochromic behavior in solid state. A fluorescent aggregate was applied to sense electron-deficient picric acid (PA) and 2,4-dinitrophenol (2,4-DNP) in an aqueous solution. Notably, the developed test strip-based sensor (S1) could be used to effectively detect PA and 2,4-DNP, which were visualized by the naked eye. Photophysical analysis revealed the occurrence of an electron transfer from electron-rich S1 to the electron-deficient nitro compounds, which was confirmed using density functional theory and 1H-nuclear magnetic resonance studies. In addition, the observed results confirmed the simple synthesis of S1 as a promising material for the development of test strip-based sensor devices for the detection of toxic and explosive aromatic nitro molecules.


Assuntos
Substâncias Explosivas , Corantes Fluorescentes , Antracenos , Elétrons , Substâncias Explosivas/análise , Água
15.
Environ Pollut ; 269: 116067, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33316499

RESUMO

Herein, an efficient visible-light-driven BiFeO3/AgVO3 nanocomposite was effectively fabricated via a facile co-precipitation procedure. The physicochemical properties of BiFeO3/AgVO3 nanocomposites were investigated via Fourier transform-infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), UV visible diffuse reflectance spectroscopy (DRS) and photoelectrochemical studies (PEC). The photocatalytic activity (PCA) of BiFeO3/AgVO3 nanocomposites was assessed with regard to the photocatalytic degradation of Rhodamine-B (RhB) when subjected to visible light irradiation (VLI). Upon 90 min of illumination, the optimal 3%-BiFeO3/AgVO3 nanocomposite showed a greater photocatalytic degradation, which was ∼3 times higher than the bare AgVO3. The lower PL intensity of 3%-BiFeO3/AgVO3 nanocomposite exposed the low recombination rate, which improved the photo-excited charge carriers separation efficiency. The experimental outcomes showed that the BiFeO3/AgVO3 nanocomposite might be an encouraging material for treatment of industrial and metropolitan wastewater. Moreover, a plausible RhB degradation mechanism was proposed proving the participation of the generated OH and O2- radicals in the degradation over BiFeO3/AgVO3 nanocomposite.


Assuntos
Nanocompostos , Catálise , Luz , Águas Residuárias , Difração de Raios X
16.
Nanomaterials (Basel) ; 10(11)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158013

RESUMO

In the present study, the synthesis of CoWO4 (CWO)-Ni nanocomposites was conducted using a wet chemical method. The crystalline phases and morphologies of the Ni nanoparticles, CWO, and CWO-Ni composites were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDAX). The electrochemical properties of CWO and CWO-Ni composite electrode materials were assessed by cyclic voltammetry (CV), and galvanostatic charge-discharge (GCD) tests using KOH as a supporting electrolyte. Among the CWO-Ni composites containing different amounts of Ni1, Ni2, and Ni3, CWO-Ni3 exhibited the highest specific capacitance of 271 F g-1 at 1 A g-1, which was greater than that of bare CWO (128 F g-1). Moreover, the CWO-Ni3 composite electrode material displayed excellent reversible cyclic stability and maintained 86.4% of its initial capacitance after 1500 discharge cycles. The results obtained herein demonstrate that the prepared CWO-Ni3 nanocomposite is a promising electrode candidate for supercapacitor applications.

17.
Ultrason Sonochem ; 63: 104960, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31986327

RESUMO

Sonoelectrochemistry is the study of the effects and applications of ultrasonic waves on electrochemical processes. The integration of ultrasound and electrochemistry offers many advantages: fast reaction rates, enhanced surface activation, and increased mass transport at an electrode. Significant progress has been made in advancing basic and applied aspects of sonoelectrochemical techniques, which are herein reviewed by addressing the development and applications of sonoelectrochemical processes in energy and environmental areas. This review examines the experimental procedures that are used in various sonoelectrochemical techniques generally used for the synthesis of energy related materials (e.g., fuel cell electrocatalysts and materials for hydrogen production) and for the degradation of various organic compounds/pollutants. The challenges that remain for the sonoelectrochemical production of energy materials, the degradation of organic pollutants, and their associated reaction pathway mechanism(s) are also discussed. This review also highlights the significant improvements made to date. The provided information in this review may be helpful to scientists working in the research areas of environmental remediation, energy exploitation and exploration, as well as synthetic process-oriented research.

18.
3 Biotech ; 9(6): 231, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31139546

RESUMO

Antibiotics have been categorized as emerging pollutants due to their indiscriminate usage, continuous input and persistence in various environmental matrices even at lower concentrations. Cephalosporins are the broad-spectrum antibiotics of ß-lactam family. Owing to its enormous production and consumption, it is reported as the second most prescribed antibiotic classes in Europe. The cephalosporin wastewater contains toxic organic compounds, inorganic salts, and active pharmaceutical ingredients (API) which pose a potential threat to the organisms in the environment. Therefore, removal of cephalosporin antibiotics from the environment has become mandatory as it contributes to increase in the level of chemical oxygen demand (COD), causing toxicity of the effluent and production of cephalosporin-resistant microbes. So far, several processes have been reported for degradation/removal of cephalosporins from the environment. A number of individual studies have been published within the last decade covering the various aspects of antibiotics. However, a detailed compilation on cephalosporin antibiotics as an emerging environmental contaminant is still lacking. Hence, the present review intends to highlight the current ecological scenario with respect to distribution, toxicity, degradation, various remediation technologies, and the regulatory aspects concerning cephalosporins. The latest successful technologies for cephalosporin degradation/removal discussed in this review will help researchers for a better understanding of the nature and persistence of cephalosporins in the environment along with the risks associated with their existence. The research thrust discussed in this review will also evoke new technologies to be attempted by the future researchers to develop sustainable options to remediate cephalosporin-contaminated environments.

19.
3 Biotech ; 9(3): 79, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30800590

RESUMO

Thermophilic bacterial communities generate thick biofilm on carbon steel API 5LX and produce extracellular metabolic products to accelerate the corrosion process in oil reservoirs. In the present study, nine thermophilic biocorrosive bacterial strains belonging to Bacillus and Geobacillus were isolated from the crude oil and produced water sample, and identified using 16S rRNA gene sequencing. The biodegradation efficiency of hydrocarbons was found to be high in the presence of bacterial isolates MN6 (82%), IR4 (94%) and IR2 (87%). During the biodegradation process, induction of the catabolic enzymes such as alkane hydroxylase, alcohol dehydrogenase and lipase were also examined in these isolates. Among them, the highest activity of alkane hydroxylase (130 µmol mg-1 protein) in IR4, alcohol dehydrogenase (70 µmol mg-1 protein) in IR2, and higher lipase activity in IR4 (60 µmol mg-1 protein) was observed. Electrochemical impedance spectroscopy and X-ray diffraction data showed that these isolates oxidize iron into ferrous/ferric oxides as the corrosion products on the carbon steel surface, whilst the crude oil hydrocarbon served as a sole carbon source for bacterial growth and development in such extreme environments.

20.
ACS Appl Mater Interfaces ; 11(5): 4969-4982, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30624046

RESUMO

Robust electrocatalysts toward the resourceful and sustainable generation of hydrogen by splitting of water via electrocatalytic hydrogen evolution reaction (HER) are a prerequisite to realize high-efficiency energy research. Highly electroactive catalysts for hydrogen production with ultralow loading of platinum (Pt) have been under exhaustive exploration to make them cutting-edge and cost-effectively reasonable for water splitting. Herein, we report the synthesis of hierarchically structured nickel pyrophosphate (ß-Ni2P2O7) by a precipitation method and nickel phosphate (Ni3(PO4)2) by two different synthetic routes, namely, simple cost-effective precipitation and solution combustion processes. Thereafter, Pt-decorated nickel pyrophosphate and nickel phosphate (ß-Ni2P2O7/Pt and Ni3(PO4)2/Pt) were prepared by using potassium hexachloroplatinate and ascorbic acid. The fabricated novel nickel pyrophosphate and nickel phosphate/Pt materials were utilized as potential and affordable electrocatalysts for HER by water splitting. The detailed electrochemical studies revealed that the ß-Ni2P2O7/Pt (1 µg·cm-2 Pt) electrocatalyst showed excellent electrocatalytic performances for HER in acidic solution with an overpotential of 28 mV at -10 mA·cm-2, a Tafel slope of 32 mV·dec, and an exchange current density ( j0) of -1.31 mA·cm-2, which were close to the values obtained using the Vulcan/Pt (8.0 µg·cm-2 Pt), commercial benchmarking electrocatalyst with eight times higher Pt amount. Furthermore, the ß-Ni2P2O7/Pt electrocatalyst maintains an excellent stability for over -0.1 V versus RHE for 12 days, keeping j0 equal after the stability test (-1.28 mA cm-2). Very well-distributed Pt NPs inside the "cages" on the ß-Ni2P2O7 structure with a crystalline pattern of 0.67 nm distance to the Ni2P2O7/Pt electrocatalyst, helping the Volmer-Tafel mechanism with the Tafel reaction as a major rate-limiting step, help to liberate very fast the Pt sites after HER. The high electrocatalytic performance and remarkable durability showed the ß-Ni2P2O7/Pt material to be a promising cost-effective electrocatalyst for hydrogen production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...