Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virusdisease ; 32(3): 535-547, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34631978

RESUMO

Chilli pepper is an important vegetable and spice crop grown worldwide. Chilli is susceptible to various pathogens, among them mosaic disease caused by Cucumber mosaic virus (CMV) is a major constraint for its production. Roving survey was carried out for mosaic disease assessment in chilli at 35 locations comprising five districts of south eastern Karnataka, which was later confirmed for the presence of different viruses in random samples by DAC-ELISA. Results revealed the prevalence of the disease caused by CMV up to 43.00% based on visual assessment. However, only in 64 samples out of 140 infected chilli samples showed CMV infection in DAC-ELISA and revealed the mixed infection of viruses. Mechanical sap inoculation of CMV-Ko isolate induced symptoms on chilli plants, which were similar to the symptoms observed in field. Complete genome sequence of CMV-Ko (RNA1, RNA2 and RNA3) isolate was amplified, cloned and sequenced. Sequence analysis revealed that it shared 83.7-99.1% nucleotide (nt) identity with CMV subgroup IB isolates infecting different crops in India. Recombination analysis of CMV-Ko genome showed that, RNA1 and RNA2 had recombinant origin and not RNA3. Host range studies for CMV-Ko isolate showed its potential of infecting nine host plants out of 21 used for transmission. Fifty advanced chilli lines were screened against CMV-Ko isolate and 27 immune lines to CMV were identified, which can be utilized for management of disease caused by CMV in chilli. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13337-021-00713-3.

2.
3 Biotech ; 7(2): 114, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28567626

RESUMO

Viruses are serious threat to chilli crop production worldwide. Resistance screening against several viruses resulted in identifying a multiple virus resistant genotype 'IHR 2451'. Degenerate primers based on the conserved regions between P-Loop and GLPL of Resistance genes (R-genes) were used to amplify nucleotide binding sites (NBS)-encoding regions from genotype 'IHR 2451'. Alignment of deduced amino acid sequences and phylogenetic analyses of isolated sequences distinguished into two groups representing toll interleukin-1 receptor (TIR) and non-TIR, and different families within the group confirming the hypotheses that dicots have both the types of NBS-LRR genes. The alignment of deduced amino acid sequences revealed conservation of subdomains P-loop, RNBS-A, kinase2, RNBS-B, and GLPL. The distinctive five RGAs showing specific conserved motifs were subjected to BLASTp and indicated high homology at deduced amino acid level with R genes identified such as Pvr9 gene for potyvirus resistance, putative late blight resistance protein homolog R1B-23 and other disease resistance genes suggesting high correlation with resistance to different pathogens. These pepper RGAs could be regarded as candidate sequences of resistant genes for marker development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...