Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202401969, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956975

RESUMO

The investigation of impact of through-space/through-bond electronic interaction among chromophores on photoexcited-state properties has immense potential owing to the distinct emergent photophysical pathways. Herein, the photoexcited-state dynamics of homo-sorted π-stacked aggregates of a naphthalenemonoimide and perylene-based acceptor-donor (NI-Pe) system and a fork-shaped acceptor-bisdonor (NI-Pe2) system possessing integrally stacked peri-substituted donors was examined. Femtosecond transient absorption (fsTA) spectra of NI-Pe monomer recorded in chloroform displayed spectroscopic signatures of the singlet state of Pe; 1Pe*, the charge-separated state; NI-●-Pe+●, and the triplet state of Pe; 3Pe*. The examination of ultrafast excited-state processes of NI-Pe aggregate in chloroform revealed faster charge recombination (𝜏𝐶𝑅𝑎 = 1.75 ns) than the corresponding monomer (𝜏𝐶𝑅𝑚 = 2.46 ns) which was followed by observation of a broad structureless band attributed to an excimer-like state. The fork-shaped NI-Pe2 displayed characteristic spectroscopic features of the NI radical anion (λmax~450 nm) and perylene dimer radical cation (λmax~520 nm) upon photoexcitation in non-polar toluene solvent in the nanosecond transient absorption (nsTA) spectroscopy. The investigation highlights the significance of intrinsic close-stacked arrangement of donors in ensuring a long-lived photoinduced charge-separated state (𝜏𝐶𝑅 = 1.35 µs) in non-polar solvents via delocalization of radical cation between the donors.

2.
Chem Rev ; 121(13): 8234-8284, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34133137

RESUMO

Inspired by the high photoconversion efficiency observed in natural light-harvesting systems, the hierarchical organization of molecular building blocks has gained impetus in the past few decades. Particularly, the molecular arrangement and packing in the active layer of organic solar cells (OSCs) have garnered significant attention due to the decisive role of the nature of donor/acceptor (D/A) heterojunctions in charge carrier generation and ultimately the power conversion efficiency. This review focuses on the recent developments in emergent optoelectronic properties exhibited by self-sorted donor-on-donor/acceptor-on-acceptor arrangement of covalently linked D-A systems, highlighting the ultrafast excited state dynamics of charge transfer and transport. Segregated organization of donors and acceptors promotes the delocalization of photoinduced charges among the stacks, engendering an enhanced charge separation lifetime and percolation pathways with ambipolar conductivity and charge carrier yield. Covalently linking donors and acceptors ensure a sufficient D-A interface and interchromophoric electronic coupling as required for faster charge separation while providing better control over their supramolecular assemblies. The design strategies to attain D-A conjugate assemblies with optimal charge carrier generation efficiency, the scope of their application compared to state-of-the-art OSCs, current challenges, and future opportunities are discussed in the review. An integrated overview of rational design approaches derived from the comprehension of underlying photoinduced processes can pave the way toward superior optoelectronic devices and bring in new possibilities to the avenue of functional supramolecular architectures.

3.
Chem Commun (Camb) ; 56(2): 225-228, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31803867

RESUMO

Aromaticity, though widely used to delineate diverse photochemical phenomena, remains to be examined in excimers, a fundamental and extensively studied entity in the excited states. Herein, the first theoretical evidence for the excited state through-space aromatic character in triplet state (T1) excimers of benzene, naphthalene and anthracene is reported using multiple aromaticity descriptors based on magnetic, electronic and geometric criteria. The calculated chemical shifts and induced current densities manifest the presence of transannular π-electronic currents in the excimers. The results open up enormous research potential from exploring the possibility of through-space aromatic character in singlet excimers to its possible implications in photoexcited state processes of aromatic supramolecular systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...