Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Top Med Chem ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38859776

RESUMO

The global pandemic known as coronavirus disease (COVID-19) is causing morbidity and mortality on a daily basis. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV--2) virus has been around since December 2019 and has infected a high number of patients due to its idiopathic pathophysiology and rapid transmission. COVID-19 is now deemed a newly identified "syndrome" condition since it causes a variety of unpleasant symptoms and systemic side effects following the pandemic. Simultaneously, it always becomes potentially hazardous when new variants develop during evolution. Its random viral etiology prevents accurate and suitable therapy. Despite the fact that multiple preclinical and research studies have been conducted to combat this lethal virus, and various therapeutic targets have been identified, the precise course of therapy remains uncertain. However, just a few drugs have shown efficacy in treating this viral infection in its early stages. Currently, several medicines and vaccinations have been licensed following clinical trial research, and many countries are competing to find the most potent and effective immunizations against this highly transmissible illness. For this narrative review, we used PubMed, Google Scholar, and Scopus to obtain epidemiological data, pre-clinical and clinical trial outcomes, and recent therapeutic alternatives for treating COVID-19 viral infection. In this study, we discussed the disease's origin, etiology, transmission, current advances in clinical diagnostic technologies, different new therapeutic targets, pathophysiology, and future therapy options for this devastating virus. Finally, this review delves further into the hype surrounding the SARS-CoV-2 illness, as well as present and potential COVID-19 therapies.

2.
Molecules ; 27(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36144768

RESUMO

Marine natural products are a discerning arena to search for the future generation of medications to treat a spectrum of ailments. Meanwhile, cancer is becoming more ubiquitous over the world, and the likelihood of dying from it is rising. Surgery, radiation, and chemotherapy are the mainstays of cancer treatment worldwide, but their extensive side effects limit their curative effect. The quest for low-toxicity marine drugs to prevent and treat cancer is one of the current research priorities of researchers. Fucoidan, an algal sulfated polysaccharide, is a potent therapeutic lead candidate against cancer, signifying that far more research is needed. Fucoidan is a versatile, nontoxic marine-origin heteropolysaccharide that has received much attention due to its beneficial biological properties and safety. Fucoidan has been demonstrated to exhibit a variety of conventional bioactivities, such as antiviral, antioxidant, and immune-modulatory characteristics, and anticancer activity against a wide range of malignancies has also recently been discovered. Fucoidan inhibits tumorigenesis by prompting cell cycle arrest and apoptosis, blocking metastasis and angiogenesis, and modulating physiological signaling molecules. This review compiles the molecular and cellular aspects, immunomodulatory and anticancer actions of fucoidan as a natural marine anticancer agent. Specific fucoidan and membranaceous polysaccharides from Ecklonia cava, Laminaria japonica, Fucus vesiculosus, Astragalus, Ascophyllum nodosum, Codium fragile serving as potential anticancer marine drugs are discussed in this review.


Assuntos
Antineoplásicos , Produtos Biológicos , Neoplasias , Alga Marinha , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antivirais/uso terapêutico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Alga Marinha/metabolismo
3.
Curr Mol Pharmacol ; 15(3): 517-531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34212832

RESUMO

The discovery of the mysterious dark matter of the genome expands our understanding of modern biology. Beyond the genome, the epigenome reveals a hitherto unknown path of key biological and functional gene control activities. Extraordinary character-P element wimpy testis-induced (PiWi)-interacting RNA (piRNA) is a type of small non-coding RNA that acts as a defender by silencing nucleic and structural invaders. PiWi proteins and piRNAs can be found in both reproductive and somatic cells, though germ line richness has been partially unravelled. The primary function is to suppress invading DNA sequences known as Transpose of Elements (TEs) that move within genomic DNA and downstream target genes via Transcriptional Gene Silencing (TGS) and Post-Translational Gene Silencing (PTGS). Germline piRNAs preserve genomic integrity, stability, sternness, and influence imprinting expression. The novel roles of somatic tissue-specific piRNAs have surprised researchers. In metazoans, including humans, piRNA regulates neurodevelopmental processes. The PiWi pathway regulates neural heterogeneity, neurogenesis, neural plasticity, and transgenerational inheritance of adaptive and long-term memory. Dysregulated piRNA causes neurodevelopmental, neurodegenerative, and psychiatric illness. A faulty piRNA signature results in inadvertent gene activation via TE activation, incorrect epigenetic tags on DNA, and/or histones. Imprinting expression is influenced by germline piRNAs, which maintain genomic integrity, stability, and sternness. New roles for piRNAs specific to somatic tissues have been discovered. Metazoans, including humans, are regulated by piRNA. In addition, the PiWi pathway regulates neuronal heterogeneity and neurogenesis as well as brain plasticity and transgenerational inheritance of adaptive and long-term memory. When piRNA is dysregulated, it can lead to neurodegenerative and psychiatric illnesses. Inappropriate gene activation or inactivation is caused by aberrant piRNA signatures, TE activation, inappropriate epigenetic marks on DNA, and/or histones. Defective piRNA regulation causes abnormal brain development and neurodegenerative aetiology, which promotes life-threatening disorders. Exemplification of exciting roles of piRNA is still in its early stages, so future research may expand on these observations using novel techniques and launch them as potential biomarkers for diagnostics and therapeutics. In this review, we summarised the potential gene molecular role of piRNAs in regulating neurobiology and serving as novel biomarkers and therapeutic targets for life-threatening disease.


Assuntos
Proteínas Argonautas , Doenças Neurodegenerativas , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Inativação Gênica , Histonas/metabolismo , Humanos , Masculino , Doenças Neurodegenerativas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
4.
Eur J Neurosci ; 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33829590

RESUMO

Ischemia or brain injuries are mostly associated with emergency admissions and huge mortality rates. Stroke is a fatal cerebrovascular malady and second top root of disability and death in both developing and developed countries with a projected rise of 24.9% (from 2010) by 2030. It's the most frequent cause of morbidities and systemic permanent morbidities due to its multi-organ systemic pathology. Brain edema or active immune response cause disturbed or abnormal systemic affects causing inflammatory damage leading to secondary infection and secondary immune response which leads to activation like pneumonia or urine tract infections. There are a variety of post stroke treatments available which claims their usefulness in reducing or inhibiting post stroke and recurrent stroke damage followed by heavy inflammatory actions. Stroke does change the quality of life and also ensures daily chronic rapid neurodegeneration and cognitive decline. The only approved therapies for stroke are alteplase and thrombectomy which is associated with adverse outcomes and are not a total cure for ischemic stroke. Stroke and immune response are reciprocal to the pathology and time of event and it progresses till untreated. The immune reaction during ischemia opens new doors for advanced targeted therapeutics. Nowadays stem cell therapy has shown better results in stroke-prone individuals. Few monoclonal antibodies like natalizumab have shown great impact on pre-clinical and clinical stroke trial studies. In this current review, we have explored an immunology of stroke, current therapeutic scenario and future potential targets as immunotherapeutic agents in stroke therapeutics.

5.
Genomics ; 113(3): 1291-1307, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33677059

RESUMO

Stroke is the foremost cause of death ranked after heart disease and cancer. It is the fatal life-threatening event that requires immediate medical admissions to overcome following morbidity and mortality. The therapeutic advances in stroke therapy have been manipulated with diverse paths for last 5 years. Recent research and clinical trials have investigated a variety of anti-stroke agents including anti-coagulants, cerebro-protective agents, antiplatelet therapy, stem-cell therapy, and specified gene therapy. In recent advanced studies, genetic therapies including noncoding RNAs (ncRNAs), long non-coding RNAs (LncRNAs), small interfering RNAs (siRNAs), microRNAs (miRNAs), Piwi interacting RNAs (PiWi RNAs) have shown better potential as targeted future therapeutics with a better outcome than conventional stroke therapeutics. The potential of targeted gene therapy is much more advanced in not only the induction of neuroprotection but also safer non-toxic targeted therapeutics. In the current state of the art review, we have focused on the recent advancements made towards the stroke with RNA modifications and targeted gene therapeutics.


Assuntos
MicroRNAs , RNA Longo não Codificante , Acidente Vascular Cerebral , Humanos , MicroRNAs/genética , Nucleotídeos , RNA Longo não Codificante/genética , RNA não Traduzido/genética , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...