Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Kidney Int ; 97(3): 516-527, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31866111

RESUMO

Here we investigated the role of murine mast cell protease 4 (MCPT4), the functional counterpart of human mast cell chymase, in an experimental model of renal ischemia reperfusion injury, a major cause of acute kidney injury. MCPT4-deficient mice had worsened kidney function compared to wildtype mice. MCPT4 absence exacerbated pathologic neutrophil infiltration in the kidney and increased kidney myeloperoxidase expression, cell death and necrosis. In kidneys with ischemia reperfusion injury, when compared to wildtype mice, MCPT4-deficient mice showed increased surface expression of adhesion molecules necessary for leukocyte extravasation including neutrophil CD162 and endothelial cell CD54. In vitro, human chymase mediated the cleavage of neutrophil expressed CD162 and also CD54, P- and E-Selectin expressed on human glomerular endothelial cells. MCPT4 also dampened systemic neutrophil activation after renal ischemia reperfusion injury as neutrophils expressed more CD11b integrin and produced more reactive oxygen species in MCPT4-deficient mice. Accordingly, after renal injury, neutrophil migration to an inflammatory site distal from the kidney was increased in MCPT4-deficient versus wildtype mice. Thus, contrary to the described overall aggravating role of mast cells, one granule-released mediator, the MCPT4 chymase, exhibits a potent anti-inflammatory function in renal ischemia reperfusion injury by controlling neutrophil extravasation and activation thereby limiting associated damage.


Assuntos
Injúria Renal Aguda , Quimases , Mastócitos/enzimologia , Traumatismo por Reperfusão , Injúria Renal Aguda/prevenção & controle , Animais , Células Endoteliais , Rim , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos , Traumatismo por Reperfusão/prevenção & controle
2.
Front Immunol ; 8: 450, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28523000

RESUMO

Obstructive nephropathy constitutes a major cause of pediatric renal progressive disease. The mechanisms leading to disease progression are still poorly understood. Kidney fibrotic lesions are reproduced using a model of partial unilateral ureteral obstruction (pUUO) in newborn mice. Based on data showing significant mast cell (MC) infiltration in patients, we investigated the role of MC and murine MCPT4, a MC-released chymase, in pUUO using MC- (Wsh/sh), MCPT4-deficient (Mcpt4-/-), and wild-type (WT) mice. Measurement of kidney length and volume by magnetic resonance imaging (MRI) as well as postmortem kidney weight revealed hypotrophy of operated right kidneys (RKs) and compensatory hypertrophy of left kidneys. Differences between kidneys were major for WT, minimal for Wsh/sh, and intermediate for Mcpt4-/- mice. Fibrosis development was focal and increased only in WT-obstructed kidneys. No differences were noticed for local inflammatory responses, but serum CCL2 was significantly higher in WT versus Mcpt4-/- and Wsh/sh mice. Alpha-smooth muscle actin (αSMA) expression, a marker of epithelial-mesenchymal transition (EMT), was high in WT, minimal for Wsh/sh, and intermediate for Mcpt4-/- RK. Supernatants of activated MC induced αSMA in co-culture experiments with proximal tubular epithelial cells. Our results support a role of MC in EMT and parenchyma lesions after pUUO involving, at least partly, MCPT4 chymase. They confirm the importance of morphologic impairment evaluation by MRI in pUUO.

3.
J Immunol ; 198(6): 2374-2382, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28167630

RESUMO

Ischemia-reperfusion injury (IRI) is an important cause of acute kidney injury that can lead to end-stage renal failure. Although the ensuing inflammatory response can restore homeostasis, a consecutive maladaptive repair and persistent inflammation represent important risk factors for postischemic chronic kidney disease development. In this study, we investigated the role of mast cells in both the early and late phases of the inflammatory response in experimental models of acute and chronic renal IRI using our recently developed mouse model that allows conditional ablation of mast cells. Depletion of mast cells prior to IRI resulted in improved renal function due to diminished local inflammatory cytokine/chemokine levels and neutrophil recruitment to the kidneys after the acute injury phase (48 h post-IRI). Furthermore, although not completely protected, mast cell-depleted mice displayed less organ atrophy and fibrosis than did wild-type mice during the chronic phases (2 and 6 wk post-IRI) of disease development. Conversely, mast cell ablation after the acute phase of IRI had no impact on organ atrophy, tubular necrosis, or fibrosis. Thus, our results suggest a deleterious role of mast cells during the acute inflammatory phase of IRI promoting subsequent fibrosis development, but not during the chronic phase of the disease.


Assuntos
Injúria Renal Aguda/imunologia , Rim/imunologia , Mastócitos/imunologia , Traumatismo por Reperfusão/imunologia , Animais , Degranulação Celular , Doença Crônica , Citocinas/metabolismo , Modelos Animais de Doenças , Fibrose , Humanos , Mediadores da Inflamação/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Infiltração de Neutrófilos , Receptores de IgE/genética
4.
Methods Mol Biol ; 1220: 487-96, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25388269

RESUMO

Immune-mediated glomerulonephritis is caused by deposition of immune complexes on the glomerular basement membrane or of autoantibodies directed against the glomerular basement membrane. Depositions lead to an inflammatory response that can ultimately destroy renal function and lead to chronic kidney disease. However, the pathological processes leading to the development of renal injury and disease progression remain poorly understood. To investigate the mechanisms of disease development in glomerulonephritis various animal models have been developed, which include as the most popular one the induction of glomerulonephritis by the injection of heterologous antibodies directed to the glomerular basement membrane. The role of mast cells and mast cell-derived mediators has been evaluated in these models. In this chapter we describe the methods that allow to set up and study the disease parameters of immune-mediated glomerulonephritis development.


Assuntos
Doenças Autoimunes/imunologia , Glomerulonefrite/imunologia , Mastócitos/patologia , Animais , Doenças Autoimunes/patologia , Doenças Autoimunes/fisiopatologia , Imunofluorescência , Secções Congeladas , Glomerulonefrite/patologia , Glomerulonefrite/fisiopatologia , Hipersensibilidade Tardia/imunologia , Imunidade Celular , Imunidade Humoral , Imunoglobulina G/imunologia , Rim/patologia , Rim/fisiopatologia , Testes de Função Renal , Camundongos , Coloração e Rotulagem
5.
Mol Immunol ; 63(1): 86-93, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24793464

RESUMO

Mast cells are hematopoietic cells involved in inflammation and immunity and have been recognized also as important effector cells in kidney inflammation. In humans, only a few mast cells reside in kidneys constitutively but in progressive renal diseases their numbers increase substantially representing an essential part of the interstitial infiltrate of inflammatory cells. Recent data obtained in experimental animal models have emphasized a complex role of these cells and the mediators they release as they have been shown both to promote, but also to protect from disease and fibrosis development. Sometimes conflicting results have been reported in similar models suggesting a very narrow window between these activities depending on the pathophysiological context. Interestingly in mice, mast cell or mast cell mediator specific actions became also apparent in the absence of significant mast cell kidney infiltration supporting systemic or regional actions via draining lymph nodes or kidney capsules. Many of their activities rely on the capacity of mast cells to release, in a timely controlled manner, a wide range of inflammatory mediators, which can promote anti-inflammatory actions and repair activities that contribute to healing, but in some circumstances or in case of inappropriate regulation may also promote kidney disease.


Assuntos
Rim/imunologia , Rim/patologia , Mastócitos/imunologia , Insuficiência Renal Crônica/imunologia , Insuficiência Renal Crônica/patologia , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/patologia , Animais , Modelos Animais de Doenças , Fibrose , Glomerulonefrite/imunologia , Glomerulonefrite/patologia , Humanos , Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , Camundongos
6.
J Immunol ; 192(1): 41-51, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24323579

RESUMO

Mast cell degranulation requires N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) and mammalian uncoordinated18 (Munc18) fusion accessory proteins for membrane fusion. However, it is still unknown how their interaction supports fusion. In this study, we found that small interfering RNA-mediated silencing of the isoform Munc18-2 in mast cells inhibits cytoplasmic secretory granule (SG) release but not CCL2 chemokine secretion. Silencing of its SNARE-binding partner syntaxin 3 (STX3) also markedly inhibited degranulation, whereas combined knockdown produced an additive inhibitory effect. Strikingly, while Munc18-2 silencing impaired SG translocation, silencing of STX3 inhibited fusion, demonstrating unique roles of each protein. Immunogold studies showed that both Munc18-2 and STX3 are located on the granule surface, but also within the granule matrix and in small nocodazole-sensitive clusters of the cytoskeletal meshwork surrounding SG. After stimulation, clusters containing both effectors were detected at fusion sites. In resting cells, Munc18-2, but not STX3, interacted with tubulin. This interaction was sensitive to nocodazole treatment and decreased after stimulation. Our results indicate that Munc18-2 dynamically couples the membrane fusion machinery to the microtubule cytoskeleton and demonstrate that Munc18-2 and STX3 perform distinct, but complementary, functions to support, respectively, SG translocation and membrane fusion in mast cells.


Assuntos
Degranulação Celular/genética , Degranulação Celular/imunologia , Mastócitos/imunologia , Mastócitos/metabolismo , Proteínas Munc18/genética , Proteínas Qa-SNARE/genética , Animais , Linhagem Celular , Grânulos Citoplasmáticos/metabolismo , Regulação da Expressão Gênica , Inativação Gênica , Microtúbulos/metabolismo , Proteínas Munc18/metabolismo , Ligação Proteica , Transporte Proteico , Proteínas Qa-SNARE/metabolismo , Interferência de RNA , Ratos
7.
Front Immunol ; 2: 37, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22566827

RESUMO

Mast cells are localized in tissues. Intense research on these cells over the years has demonstrated their role as effector cells in the maintenance of tissue integrity following injury produced by infectious agents, toxins, metabolic states, etc. After stimulation they release a sophisticated array of inflammatory mediators, cytokines, and growth factors to orchestrate an inflammatory response. These mediators can directly initiate tissue responses on resident cells, but they have also been shown to regulate other infiltrating immune cell functions. Research in recent years has revealed that the outcome of mast cell actions is not always detrimental for the host but can also limit disease development. In addition, mast cell functions highly depend on the physiological context in the organism. Depending on the genetic background, strength of the injurious event, the particular microenvironment, mast cells direct responses ranging from pro- to anti-inflammatory. It appears that they have evolved as cellular sensors to discern their environment in order to initiate an appropriate physiological response either aimed to favor inflammation for repair or at the contrary limit the inflammatory process to prevent further damage. Like every sophisticated machinery, its dysregulation leads to pathology. Given the broad distribution of mast cells in tissues this also explains their implication in many inflammatory diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...