Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 191(4): 2353-2366, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36670526

RESUMO

Phytochromes are red light and far-red light sensitive, plant-specific light receptors that allow plants to orient themselves in space and time. Tomato (Solanum lycopersicum) contains a small family of five phytochrome genes, for which to date stable knockout mutants are only available for three of them. Using CRISPR technology, we created multiple alleles of SlPHYTOCHROME F (phyF) mutants to determine the function of this understudied phytochrome. We report that SlphyF acts as a red/far-red light reversible low fluence sensor, likely through the formation of heterodimers with SlphyB1 and SlphyB2. During photomorphogenesis, phyF functions additively with phyB1 and phyB2. Our data further suggest that phyB2 requires the presence of either phyB1 or phyF during seedling de-etiolation in red light, probably via heterodimerization, while phyB1 homodimers are required and sufficient to suppress hypocotyl elongation in red light. During the end-of-day far-red response, phyF works additively with phyB1 and phyB2. In addition, phyF plays a redundant role with phyB1 in photoperiod detection and acts additively with phyA in root patterning. Taken together, our results demonstrate various roles for SlphyF during seedling establishment, sometimes acting additively, other times acting redundantly with the other phytochromes in tomato.


Assuntos
Fitocromo , Solanum lycopersicum , Fitocromo/genética , Solanum lycopersicum/genética , Plântula , Hipocótilo/genética , Luz , Fitocromo A/genética , Fitocromo B/genética , Mutação/genética
2.
Genetics ; 223(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36124968

RESUMO

Gene flow between species in the genus Arabidopsis occurs in significant amounts, but how exactly gene flow is achieved is not well understood. Polyploidization may be one avenue to explain gene flow between species. One problem, however, with polyploidization as a satisfying explanation is the occurrence of lethal genomic instabilities in neopolyploids as a result of genomic exchange, erratic meiotic behavior, and genomic shock. We have created an autoallohexaploid by pollinating naturally co-occurring diploid Arabidopsis thaliana with allotetraploid Arabidopsis suecica (an allotetraploid composed of A. thaliana and Arabidopsis arenosa). Its triploid offspring underwent spontaneous genome duplication and was used to generate a multigenerational pedigree. Using genome resequencing, we show that 2 major mechanisms promote stable genomic exchange in this population. Legitimate meiotic recombination and chromosome segregation between the autopolyploid chromosomes of the 2 A. thaliana genomes occur without any obvious bias for the parental origin and combine the A. thaliana haplotypes from the A. thaliana parent with the A. thaliana haplotypes from A. suecica similar to purely autopolyploid plants. In addition, we repeatedly observed that occasional exchanges between regions of the homoeologous chromosomes are tolerated. The combination of these mechanisms may result in gene flow leading to stable introgression in natural populations. Unlike the previously reported resynthesized neoallotetraploid A. suecica, this population of autoallohexaploids contains mostly vigorous, and genetically, cytotypically, and phenotypically variable individuals. We propose that naturally formed autoallohexaploid populations might serve as an intermediate bridge between diploid and polyploid species, which can facilitate gene flow rapidly and efficiently.


Assuntos
Arabidopsis , Introgressão Genética , Arabidopsis/genética , Cromossomos , Genoma de Planta , Genômica , Poliploidia
3.
Plant Direct ; 4(2): e00205, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32128473

RESUMO

Gene duplication and polyploidization are genetic mechanisms that instantly add genetic material to an organism's genome. Subsequent modification of the duplicated material leads to the evolution of neofunctionalization (new genetic functions), subfunctionalization (differential retention of genetic functions), redundancy, or a decay of duplicated genes to pseudogenes. Phytochromes are light receptors that play a large role in plant development. They are encoded by a small gene family that in tomato is comprised of five members: PHYA, PHYB1, PHYB2, PHYE, and PHYF. The most recent gene duplication within this family was in the ancestral PHYB gene. Using transcriptome profiling, co-expression network analysis, and physiological and molecular experimentation, we show that tomato SlPHYB1 and SlPHYB2 exhibit both common and non-redundant functions. Specifically, PHYB1 appears to be the major integrator of light and auxin responses, such as gravitropism and phototropism, while PHYB1 and PHYB2 regulate aspects of photosynthesis antagonistically to each other, suggesting that the genes have subfunctionalized since their duplication.

4.
Front Plant Sci ; 10: 152, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873186

RESUMO

Phytochromes comprise a small family of photoreceptors with which plants gather environmental information that they use to make developmental decisions, from germination to photomorphogenesis to fruit development. Most phytochromes are activated by red light and de-activated by far-red light, but phytochrome A (phyA) is responsive to both and plays an important role during the well-studied transition of seedlings from dark to light growth. The role of phytochromes during skotomorphogenesis (dark development) prior to reaching light, however, has received considerably less attention although previous studies have suggested that phytochrome must play a role even in the dark. We profiled proteomic and transcriptomic seedling responses in tomato during the transition from dark to light growth and found that phyA participates in the regulation of carbon flux through major primary metabolic pathways, such as glycolysis, beta-oxidation, and the tricarboxylic acid (TCA) cycle. Additionally, phyA is involved in the attenuation of root growth soon after reaching light, possibly via control of sucrose allocation throughout the seedling by fine-tuning the expression levels of several sucrose transporters of the SWEET gene family even before the seedling reaches the light. Presumably, by participating in the control of major metabolic pathways, phyA sets the stage for photomorphogenesis for the dark grown seedling in anticipation of light.

5.
PLoS Comput Biol ; 14(1): e1005872, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29324777

RESUMO

Applied bioinformatics skills are becoming ever more indispensable for biologists, yet incorporation of these skills into the undergraduate biology curriculum is lagging behind, in part due to a lack of instructors willing and able to teach basic bioinformatics in classes that don't specifically focus on quantitative skill development, such as statistics or computer sciences. To help undergraduate course instructors who themselves did not learn bioinformatics as part of their own education and are hesitant to plunge into teaching big data analysis, a module was developed that is written in plain-enough language, using publicly available computing tools and data, to allow novice instructors to teach next-generation sequence analysis to upper-level undergraduate students. To determine if the module allowed students to develop a better understanding of and appreciation for applied bioinformatics, various tools were developed and employed to assess the impact of the module. This article describes both the module and its assessment. Students found the activity valuable for their education and, in focus group discussions, emphasized that they saw a need for more and earlier instruction of big data analysis as part of the undergraduate biology curriculum.


Assuntos
Biologia Computacional/educação , Currículo , Avaliação Educacional , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Humanos , Análise de Sequência de RNA/estatística & dados numéricos , Estudantes , Inquéritos e Questionários , Ensino
6.
BMC Genomics ; 18(1): 653, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28830347

RESUMO

BACKGROUND: Allopolyploids contain genomes composed of more than two complete sets of chromosomes that originate from at least two species. Allopolyploidy has been suggested as an important evolutionary mechanism that can lead to instant speciation. Arabidopsis suecica is a relatively recent allopolyploid species, suggesting that its natural accessions might be genetically very similar to each other. Nonetheless, subtle phenotypic differences have been described between different geographic accessions of A. suecica grown in a common garden. RESULTS: To determine the degree of genomic similarity between different populations of A. suecica, we obtained transcriptomic sequence, quantified SNP variation within the gene space, and analyzed gene expression levels genome-wide from leaf material grown in controlled lab conditions. Despite their origin from the same progenitor species, the two accessions of A. suecica used in our study show genomic and transcriptomic variation. We report significant gene expression differences between the accessions, mostly in genes with stress-related functions. Among the differentially expressed genes, there are a surprising number of homoeologs coordinately regulated between sister accessions. CONCLUSIONS: Many of these homoeologous genes and other differentially expressed genes affect transpiration and stomatal regulation, suggesting that they might be involved in the establishment of the phenotypic differences between the two accessions.


Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Genes de Plantas/genética , Variação Genética , Poliploidia , Estresse Fisiológico/genética , Ontologia Genética , Genômica
7.
Plant Physiol ; 170(4): 2251-63, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26896394

RESUMO

Allopolyploids are organisms possessing more than two complete sets of chromosomes from two or more species and are frequently more vigorous than their progenitors. To address the question why allopolyploids display hybrid vigor, we compared the natural allopolyploid Arabidopsis suecica to its progenitor species Arabidopsis thaliana and Arabidopsis arenosa. We measured chlorophyll content, CO2 assimilation, and carbohydrate production under varying light conditions and found that the allopolyploid assimilates more CO2 per unit chlorophyll than either of the two progenitor species in high intensity light. The increased carbon assimilation corresponds with greater starch accumulation, but only in strong light, suggesting that the strength of hybrid vigor is dependent on environmental conditions. In weaker light A. suecica tends to produce as much primary metabolites as the better progenitor. We found that gene expression of LIMIT DEXTRINASE1, a debranching enzyme that cleaves branch points within starch molecules, is at the same level in the allopolyploid as in the maternal progenitor A. thaliana and significantly more expressed than in the paternal progenitor A. arenosa. However, expression differences of ß-amylases and GLUCAN-WATER DIKINASE1 were not statistically significantly elevated in the allopolyploid over progenitor expression levels. In contrast to allopolyploids, autopolyploid A. thaliana showed the same photosynthetic rate as diploids, indicating that polyploidization alone is likely not the reason for enhanced vigor in the allopolyploid. Taken together, our data suggest that the magnitude of heterosis in A. suecica is environmentally regulated, arises from more efficient photosynthesis, and, under specific conditions, leads to greater starch accumulation than in its progenitor species.


Assuntos
Arabidopsis/genética , Meio Ambiente , Vigor Híbrido/genética , Poliploidia , Arabidopsis/efeitos da radiação , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Clorofila A , Glucose/metabolismo , Luz , Fotossíntese/efeitos da radiação , Especificidade da Espécie , Amido/metabolismo , Sacarose/metabolismo , Transcrição Gênica
8.
PLoS One ; 10(5): e0127897, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26011630

RESUMO

Angiosperm flowers are usually determinate structures that may produce seeds. In some species, flowers can revert from committed flower development back to an earlier developmental phase in a process called floral reversion. The allopolyploid Arabidopsis suecica displays photoperiod-dependent floral reversion in a subset of its flowers, yet little is known about the environmental conditions enhancing this phenotype, or the morphological processes leading to reversion. We have used light and electron microscopy to further describe this phenomenon. Additionally, we have further studied the phenology of flowering and floral reversion in A. suecica. In this study we confirm and expand upon our previous findings that floral reversion in the allopolyploid A. suecica is photoperiod-dependent, and show that its frequency is correlated with the timing for the onset of flowering. Our results also suggest that floral reversion in A. suecica displays natural variation in its penetrance between geographic populations of A. suecica.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Fotoperíodo
9.
Chromosome Res ; 22(2): 117-34, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24788061

RESUMO

Whole genome duplication (WGD), which gives rise to polyploids, is a unique type of mutation that duplicates all the genetic material in a genome. WGD provides an evolutionary opportunity by generating abundant genetic "raw material," and has been implicated in diversification, speciation, adaptive radiation, and invasiveness, and has also played an important role in crop breeding. However, WGD at least initially challenges basic biological functions by increasing cell size, altering relationships between cell volume and DNA content, and doubling the number of homologous chromosome copies that must be sorted during cell division. Newly polyploid lineages often have extensive changes in gene regulation, genome structure, and may suffer meiotic or mitotic chromosome mis-segregation. The abundance of species that persist in nature as polyploids shows that these problems are surmountable and/or that advantages of WGD might outweigh drawbacks. The molecularly especially tractable Arabidopsis genus has several ancient polyploidy events in its history and contains several independent more recent polyploids. This genus can thus provide important insights into molecular aspects of polyploid formation, establishment, and genome evolution. The ability to integrate ecological and evolutionary questions with molecular and genetic understanding makes comparative analyses in this genus particularly attractive and holds promise for advancing our general understanding of polyploid biology. Here, we highlight some of the findings from Arabidopsis that have given us insights into the origin and evolution of polyploids.


Assuntos
Arabidopsis/genética , Genoma de Planta , Poliploidia , Adaptação Fisiológica/genética , Arabidopsis/classificação , Cruzamento , Segregação de Cromossomos , Evolução Molecular , Duplicação Gênica , Variação Genética , Meiose
10.
Genetics ; 191(2): 535-47, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22426881

RESUMO

Polyploidization is an important mechanism for introducing diversity into a population and promoting evolutionary change. It is believed that most, if not all, angiosperms have undergone whole genome duplication events in their evolutionary history, which has led to changes in genome structure, gene regulation, and chromosome maintenance. Previous studies have shown that polyploidy can coincide with meiotic abnormalities and somatic cytogenetic mosaics in Arabidopsis allotetraploids, but it is unclear whether this phenomenon can contribute to novel diversity or act as a mechanism for speciation. In this study we tested the hypothesis that mosaic aneuploidy contributes to the formation of incipient diversity in neoallopolyploids. We generated a population of synthesized Arabidopsis allohexaploids and monitored karyotypic and phenotypic variation in this population over the first seven generations. We found evidence of sibling line-specific chromosome number variations and rapidly diverging phenotypes between lines, including flowering time, leaf shape, and pollen viability. Karyotypes varied between sibling lines and between cells within the same tissues. Cytotypic variation correlates with phenotypic novelty, and, unlike in allotetraploids, remains a major genomic destabilizing factor for at least the first seven generations. While it is still unclear whether new stable aneuploid lines will arise from these populations, our data are consistent with the notion that somatic aneuploidy, especially in higher level allopolyploids, can act as an evolutionary relevant mechanism to induce rapid variation not only during the initial allopolyploidization process but also for several subsequent generations. This process may lay the genetic foundation for multiple, rather than just a single, new species.


Assuntos
Arabidopsis/genética , Evolução Biológica , Poliploidia , Aneuploidia , Biodiversidade , Cromossomos de Plantas , Genoma de Planta , Instabilidade Genômica , Mitose , Fenótipo , Pólen/metabolismo
11.
Physiol Plant ; 144(2): 123-33, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21939446

RESUMO

Allopolyploids arise from the hybridization of two species concomitant to genome doubling. While established allopolyploids are common in nature and vigorous in growth, early generation allopolyploids are often less fertile than their progenitors and display frequent phenotypic instabilities. It is commonly assumed that new allopolyploid species must pass through a bottleneck from which only those lines emerge that have reconciled genomic incompatibilities inherited from their progenitors in their combined genome, yet little is known about the processes following allopolyploidization over evolutionary time. To address the question if a single allopolyploidization event leads to a single new homogeneous species or may result in diverse offspring lines, we have investigated 13 natural accessions of Arabidopsis suecica, a relatively recent allopolyploid derived from a single hybridization event. The studied accessions display low genetic diversity between lines, yet show evidence of heritable phenotypic diversity of traits, some of which may be adaptive. Furthermore, our data show that contrary to the notion that unstable phenotypes in neoallopolyploids are eliminated rapidly in the new species, some instabilities are carried along throughout the species' evolution, persisting in the established allopolyploid. In summary, our results suggest that a single allopolyploidization event may lay the foundation for diverse populations of the new allopolyploid species.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Ecótipo , Variação Genética , Geografia , Poliploidia , Arabidopsis/anatomia & histologia , Elementos de DNA Transponíveis/genética , Fertilidade , Flores/anatomia & histologia , Flores/fisiologia , Genoma de Planta/genética
12.
CBE Life Sci Educ ; 10(1): 43-54, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21364099

RESUMO

There is increasing enthusiasm for teaching approaches that combine mathematics and biology. The call for integrating more quantitative work in biology education has led to new teaching tools that improve quantitative skills. Little is known, however, about whether increasing interdisciplinary work can lead to adverse effects, such as the development of broader but shallower skills or the possibility that math anxiety causes some students to disengage in the classroom, or, paradoxically, to focus so much on the mathematics that they lose sight of its application for the biological concepts in the center of the unit at hand. We have developed and assessed an integrative learning module and found disciplinary learning gains to be equally strong in first-year students who actively engaged in embedded quantitative calculations as in those students who were merely presented with quantitative data in the context of interpreting biological and biostatistical results. When presented to advanced biology students, our quantitative learning tool increased test performance significantly. We conclude from our study that the addition of mathematical calculations to the first year and advanced biology curricula did not hinder overall student learning, and may increase disciplinary learning and data interpretation skills in advanced students.


Assuntos
Biologia/educação , Estudos Interdisciplinares , Matemática/educação , Avaliação de Programas e Projetos de Saúde , Ensino/métodos , Avaliação Educacional , Aprendizagem , Análise de Sequência com Séries de Oligonucleotídeos , Estudantes
13.
Methods Mol Biol ; 620: 287-313, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20652509

RESUMO

Microarray experiments have become routine in the past few years in many fields of biology. Analysis of array hybridizations is often performed with the help of commercial software programs, which produce gene lists, graphs, and sometimes provide values for the statistical significance of the results. Exactly what is computed by many of the available programs is often not easy to reconstruct or may even be impossible to know for the end user. It is therefore not surprising that many biology students and some researchers using microarray data do not fully understand the nature of the underlying statistics used to arrive at the results.We have developed a module that we have used successfully in undergraduate biology and statistics education that allows students to get a better understanding of both the basic biological and statistical theory needed to comprehend primary microarray data. The module is intended for the undergraduate level but may be useful to anyone who is new to the field of microarray biology. Additional course material that was developed for classroom use can be found at http://www.polyploidy.org/ .In our undergraduate classrooms we encourage students to manipulate microarray data using Microsoft Excel to reinforce some of the concepts they learn. We have included instructions for some of these manipulations throughout this chapter (see the "Do this..." boxes). However, it should be noted that while Excel can effectively analyze our small sample data set, more specialized software would typically be used to analyze full microarray data sets. Nevertheless, we believe that manipulating a small data set with Excel can provide insights into the workings of more advanced analysis software.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Variância , Cor , Interpretação Estatística de Dados , Software
14.
New Phytol ; 186(1): 194-206, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20409178

RESUMO

Two fundamental types of polyploids are known: allopolyploids, in which different parental chromosome sets were combined by ancestral hybridization and duplication; and autopolyploids, which derive from multiplication of the same chromosome set. In autopolyploids, changes to the nuclear environment are not as profound as in allopolyploids, and therefore the effects of genome doubling on gene regulation remain unclear. To investigate the consequences of autopolyploidization per se, we performed a microarray analysis in three equivalent lineages of matched diploids and autotetraploids of Arabidopsis thaliana. Additionally, we compared the expression levels of GFP transgenes driven by endogenous enhancer elements (enhancer traps) in diploids and autotetraploid of 16 transgenic lines. We expected that true ploidy-dependent changes should occur in independently derived autopolyploid lineages. By this criterion, our microarray analysis detected few changes associated with polyploidization, while the enhancer-trap analysis revealed altered GFP expression at multiple plant life stages for 25% of the lines tested. Genes on individual traps were coordinately regulated while endogenous gene expression was not affected except for one line. The unique sensitivity of enhancer traps to ploidy, in contrast to the observed stability of genes, could derive from lower complexity of regulatory pathways acting on traps versus endogenous genes.


Assuntos
Arabidopsis/genética , Elementos Facilitadores Genéticos/genética , Duplicação Gênica , Perfilação da Expressão Gênica , Genoma de Planta/genética , Diploide , Fluorescência , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genótipo , Proteínas de Fluorescência Verde/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Plantas Geneticamente Modificadas , Poliploidia
15.
New Phytol ; 186(1): 239-50, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20074092

RESUMO

Flower reversion is the result of genetic or environmental effects that reverse developmental steps in the transition from the vegetative to the reproductive phase in plants. Here, we describe peculiar floral abnormalities, homeotic conversions, and flower reversion in several wild-type accessions of the natural allopolyploid Arabidopsis suecica. Microscopy was used to illustrate the phenotype in detail and we experimented with varying photoperiod lengths to establish whether or not the phenotype was responsive to the environment. We also profiled the transcriptional activity of several floral regulator genes during flower reversion using real-time PCR. We showed that the frequency of floral reversion was affected by day length and the position of the flower along the inflorescence axis. In reverting flowers we found unusual gene expression patterns of floral promoters and inflorescence maintenance genes, including lower mRNA levels of AGAMOUS-LIKE-24 (AGL-24), APETALA1 (AP1), and SHORT VEGETATIVE PHASE (SVP), and higher mRNA levels of SUPRESSOR OF CONSTANS1 (SOC1) compared with normal flowers. We conclude that the floral reversion frequency in A. suecica is susceptible to photoperiod changes, and that the floral abnormalities coincide with the competing expression of floral promoters and floral repressors in reverting floral tissue.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Flores/crescimento & desenvolvimento , Flores/genética , Fotoperíodo , Poliploidia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/genética , Meristema/crescimento & desenvolvimento , Mutação/genética , Fenótipo , Fatores de Tempo
16.
Am J Bot ; 96(9): 1656-64, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21622352

RESUMO

Allopolyploids contain complete sets of chromosomes from two or more different progenitor species. Because allopolyploid hybridization can lead to speciation, allopolyploidy is an important mechanism in evolution. Meiotic instability in early-generation allopolyploids contributes to high lethality, but less is known about mitotic fidelity in allopolyploids. We compared mitotic stability in resynthesized Arabidopsis suecica-like neoallopolyploids with that in 13 natural lines of A. suecica (2n = 4x = 26). We used fluorescent in situ hybridization to distinguish the chromosomal contribution of each progenitor, A. thaliana (2n = 2x =10) and A. arenosa (2n = 4x = 32). Surprisingly, cells of the paternal parent A. arenosa had substantial aneuploidy, while cells of the maternal parent A. thaliana were more stable. Both natural and resynthesized allopolyploids had low to intermediate levels of aneuploidy. Our data suggest that polyploidy in Arabidopsis is correlated with aneuploidy, but varies in frequency by species. The chromosomal composition in aneuploid cells within individuals was variable, suggesting somatic mosaicisms of cell lineages, rather than the formation of distinct, stable cytotypes. Our results suggest that somatic aneuploidy can be tolerated in Arabidopsis polyploids, but there is no evidence that this type of aneuploidy leads to stable novel cytotypes.

17.
Genetics ; 172(1): 507-17, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16172500

RESUMO

Polyploidy has occurred throughout the evolutionary history of all eukaryotes and is extremely common in plants. Reunification of the evolutionarily divergent genomes in allopolyploids creates regulatory incompatibilities that must be reconciled. Here we report genomewide gene expression analysis of Arabidopsis synthetic allotetraploids, using spotted 70-mer oligo-gene microarrays. We detected >15% transcriptome divergence between the progenitors, and 2105 and 1818 genes were highly expressed in Arabidopsis thaliana and A. arenosa, respectively. Approximately 5.2% (1362) and 5.6% (1469) genes displayed expression divergence from the midparent value (MPV) in two independently derived synthetic allotetraploids, suggesting nonadditive gene regulation following interspecific hybridization. Remarkably, the majority of nonadditively expressed genes in the allotetraploids also display expression changes between the parents, indicating that transcriptome divergence is reconciled during allopolyploid formation. Moreover, >65% of the nonadditively expressed genes in the allotetraploids are repressed, and >94% of the repressed genes in the allotetraploids match the genes that are expressed at higher levels in A. thaliana than in A. arenosa, consistent with the silencing of A. thaliana rRNA genes subjected to nucleolar dominance and with overall suppression of the A. thaliana phenotype in the synthetic allotetraploids and natural A. suecica. The nonadditive gene regulation is involved in various biological pathways, and the changes in gene expression are developmentally regulated. In contrast to the small effects of genome doubling on gene regulation in autotetraploids, the combination of two divergent genomes in allotetraploids by interspecific hybridization induces genomewide nonadditive gene regulation, providing a molecular basis for de novo variation and allopolyploid evolution.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Poliploidia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Evolução Biológica , Hibridização Genética , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo Conformacional de Fita Simples , RNA de Plantas/genética , RNA de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Plant J ; 41(2): 221-30, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15634199

RESUMO

Polyploids are common and arise frequently by genome duplication (autopolyploids) or interspecific hybridization (allopolyploids). Neoallopolyploids display sterility, lethality, phenotypic instability, gene silencing and epigenetic changes. Little is known about the molecular basis of these phenomena, and how much genomic remodeling happens upon allopolyploidization. Extensive genomic remodeling has been documented in wheat, but little remodeling occurs in cotton. Newly synthesized Arabidopsis allopolyploids, which display phenotypic instability and low fertility, displayed several, possibly related mechanisms that can remodel genomes. We detected transcriptional activity of several transposons although their transposition was limited. One represents a new family of conditionally active En-Spm-like transposons of Arabidopsis thaliana, which underwent remodeling of CG methylation upon allopolyploidization. A random amplified fragment length polymorphism survey suggested remodeling at few, specific loci. Meiotic analyses revealed the appearance of chromosomal fragments in a substantial fraction of anther meiocytes. In several individuals produced by hybrids between the synthetic and a natural allopolyploid pollen viability inversely correlated with meiotic instability. Activity of selected DNA transposons and the possibly related chromosomal breaks could cause changes by inducing translocations and rearrangements.


Assuntos
Arabidopsis/genética , Genoma de Planta , Poliploidia , Mapeamento Cromossômico , Elementos de DNA Transponíveis , Epigênese Genética , Filogenia , Técnica de Amplificação ao Acaso de DNA Polimórfico , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Proc Natl Acad Sci U S A ; 101(52): 18240-5, 2004 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-15604143

RESUMO

Allopolyploidy is a significant evolutionary process, resulting in new species with diploid or greater chromosome complements derived from two or more progenitor species. We examined the chromosomal consequences of genomic merger in Arabidopsis suecica, the allotetraploid hybrid of Arabidopsis thaliana and Arabidopsis arenosa. Fluorescence in situ hybridization with centromere, nucleolus organizer region (NOR), and 5S rRNA gene probes reveals the expected numbers of progenitor chromosomes in natural A. suecica, but one pair of A. thaliana NORs and one pair of A. arenosa-derived 5S gene loci are missing. Similarly, in newly formed synthetic A. suecica-like allotetraploids, pairs of A. thaliana NORs are gained de novo, lost, and/or transposed to A. arenosa chromosomes, with genotypic differences apparent between F(3) siblings of the same F(2) parent and between independent lines. Likewise, pairs of A. arenosa 5S genes are lost and novel linkages between 5S loci and NORs arise in synthetic allotetraploids. By contrast, the expected numbers of A. arenosa-derived NORs and A. thaliana-derived 5S loci are found in both natural and synthetic A. suecica. Collectively, these observations suggest that some, but not all, loci are unstable in newly formed A. suecica allotetraploids and can participate in a variety of alternative rearrangements, some of which resemble chromosomal changes found in nature.


Assuntos
Arabidopsis/genética , Cromossomos/ultraestrutura , Genoma de Planta , Arabidopsis/metabolismo , Centrômero , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hibridização in Situ Fluorescente , Metáfase , Modelos Biológicos , Região Organizadora do Nucléolo , Poliploidia , RNA Ribossômico , RNA Ribossômico 5S
20.
Genetics ; 167(4): 1961-73, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15342533

RESUMO

Polyploidization is an abrupt speciation mechanism for eukaryotes and is especially common in plants. However, little is known about patterns and mechanisms of gene regulation during early stages of polyploid formation. Here we analyzed differential expression patterns of the progenitors' genes among successive selfing generations and independent lineages. The synthetic Arabidopsis allotetraploid lines were produced by a genetic cross between A. thaliana and A. arenosa autotetraploids. We found that some progenitors' genes are differentially expressed in early generations, whereas other genes are silenced in late generations or among different siblings within a selfing generation, suggesting that the silencing of progenitors' genes is rapidly and/or stochastically established. Moreover, a subset of genes is affected in autotetraploid and multiple independent allotetraploid lines and in A. suecica, a natural allotetraploid derived from A. thaliana and A. arenosa, indicating locus-specific susceptibility to ploidy-dependent gene regulation. The role of DNA methylation in silencing progenitors' genes is tested in DNA-hypomethylation transgenic lines of A. suecica using RNA interference (RNAi). Two silenced genes are reactivated in both ddm1- and met1-RNAi lines, consistent with the demethylation of centromeric repeats and gene-specific regions in the genome. A rapid and stochastic process of differential gene expression is reinforced by epigenetic regulation during polyploid formation and evolution.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Poliploidia , Sequência de Bases , Clonagem Molecular , Primers do DNA , Inativação Gênica , Polimorfismo de Fragmento de Restrição , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...