Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 203: 256-267, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35093443

RESUMO

The unique pool of features makes bacterial cellulose (BC) a robust platform to tailor its functionalities. Herein, the BC matrix was reinforced with multiwalled carbon nanotubes (MWCNT) to control infection and accelerate the healing process of diabetic wounds. The prepared BC-MWCNT composite film was characterized and antibacterial activity was assessed. Further, the in-vivo wound healing activity was performed and temporal expression of interleukin (IL-1α), tumor necrosis factor (TNF-α), vascular endothelial growth factor (VEGF) and platelets derived growth factor (PDGF) was quantitatively measured by real-time PCR. The characterization results confirmed the reinforcement of the BC matrix with MWCNT. The composite film showed antibacterial activity against all the tested strains. Moreover, the macroscopic analysis of the wound demonstrated faster closure of the diabetic wound in BC-MWCNT group (99% healing) as compared to negative control (77%) in 21 days. Histological studies further supported the results where complete reepithelization of the epidermis and healthy granulation tissue were observed in BC-MWCNT treated group. Molecular studies revealed that BC-MWCNT group showed relatively lesser expression of pro-inflammatory cytokines IL-1α and TNF-α and higher expression of VEGF than control that may have favored the faster healing. This study suggested that the tailorable properties of BC can be exploited to develop composites with potential applications in diabetic wound healing.


Assuntos
Diabetes Mellitus , Nanotubos de Carbono , Celulose , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Cicatrização
2.
Curr Pharm Des ; 26(45): 5844-5865, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33243108

RESUMO

BACKGROUND: Due to the rapid growth in life threatening diseases such as cancer, diabetes, chronic wound and HIV/AIDS along with rise of side effects of the current treatments, world is now focusing to utilize new treatment options. Currently, the development of green nanotechnology field seems as a potential alternate for diseases diagnosis and treatment by preparation of various sizes and shapes of nanomaterials. OBJECTIVE: This review is to present the explored biological sources in synthesis of nanomaterials particularly metal and metal oxides nanoparticles and critical review of the applications of biosynthesized nanoparticles in pharmaceutical and biomedical fields. METHODS: In this review, the various biological sources including bacteria, fungi, algae and plants used in synthesis of nanomaterials and mechanism involved in preparation are elaborated. In addition, biosynthesized nanomaterials applied as drug delivery system for anticancer, antibiotic, antidiabetic agent and functioned as potential diagnostic, antimicrobial, anticancer and wound healing candidates are comprehensively reviewed. RESULTS: The synthesized metal and metal oxides from green protocol proved to have advantages such as being biocompatible, effective and cheap. Furthermore, the green synthesized metal and metal oxide nanoparticles showed to possess prominent physical, chemical and biological properties that can be efficiently utilized for pharmaceutical and biomedical applications. CONCLUSION: The information gathered in this review will provide a baseline for exploring more potential usage of green synthesized metal and metal oxide nanomaterials for various other applications. However, a concrete understanding of the safety of these nanomaterials is still needed to minimize the potential side effects.


Assuntos
Nanopartículas Metálicas , Preparações Farmacêuticas , Humanos , Metais , Nanotecnologia , Óxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...