Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 7(2): e06208, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33659740

RESUMO

Copper is the third most utilized metal and is a versatile resource with multiple beneficial uses, but it may also become toxic to aquatic life in excess amount. Thus, there is a need to develop methods to reduce the copper contamination in the environment, particularly in bodies of water. Phytoremediation using Dendrocalamus asper may offer an environment-benign and potentially effective method for copper removal though its effectiveness may take several years to materialize for this technology to become cost-effective. By growing D. asper in synthesized contaminated water and analyzing the change in the copper content of the substrate via atomic absorption spectrophotometry, the removal was found to be optimal at 20 ppm Cu and pH 5. The rate of removal was found to have an order of 2.71 and a kinetic constant of 0.0013 ppm-1.71 day-1. With this, it may be possible to estimate the treatment length of phytoremediation given an initial level of copper contamination and a target concentration.

2.
Heliyon ; 5(9): e02440, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31687550

RESUMO

The phytoremediation potential of three bamboo species, i.e. Bambusa merilliana, Bambusa blumeana, and Dendrocalamus asper, were evaluated for their total Cu uptake ability in hydroponics. Dendrocalamus asper proved to be the most efficient in terms of Cu phytoremediating potential with a constant positive uptake of 80 µM in a contaminated substrate and a bioconcentration factor of 50.57. Copper accumulation was found to concentrate the most in the roots compared to the amount translocated in the shoots. Analysis of the Cu uptake of D. asper roots at varying concentrations of Cu contamination (40, 80 and 120 µM) allowed for the fitting of the kinetics of Cu uptake and removal with existing kinetic models. The rate of copper removal per mass of plant was the best for the 0th order model in the 80 µM solution with an R2 of 0.954 and rate constant of 3.136 mg-kg-1d-1. The accumulation of Cu within the roots on day 7 (7d) followed the Michaelis-Menten model with an R2 of 0.970. The Michaelis-Menten constant (KM) was 4.87 mg/L and maximum accumulation velocity (Vmax) was 66.26 mg Cu-kg-1-day-1. Results suggest that D. asper is a potential hyperaccumulator plant that can be used in clean-up of domestic and industrial wastes present along river systems in the Philippines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...