Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Virol ; 88(12): 6762-77, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24696474

RESUMO

UNLABELLED: Latency-associated nuclear antigen (LANA), a multifunctional protein expressed by the Kaposi sarcoma-associated herpesvirus (KSHV) in latently infected cells, is required for stable maintenance of the viral episome. This is mediated by two interactions: LANA binds to specific sequences (LBS1 and LBS2) on viral DNA and also engages host histones, tethering the viral genome to host chromosomes in mitosis. LANA has also been suggested to affect host gene expression, but both the mechanism(s) and role of this dysregulation in KSHV biology remain unclear. Here, we have examined LANA interactions with host chromatin on a genome-wide scale using chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) and show that LANA predominantly targets human genes near their transcriptional start sites (TSSs). These host LANA-binding sites are generally found within transcriptionally active promoters and display striking overrepresentation of a consensus DNA sequence virtually identical to the LANA-binding site 1 (LBS1) motif in KSHV DNA. Comparison of the ChIP-seq profile with whole-transcriptome (high-throughput sequencing of RNA transcripts [RNA-seq]) data reveals that few of the genes that are differentially regulated in latent infection are occupied by LANA at their promoters. This suggests that direct LANA binding to promoters is not the prime determinant of altered host transcription in KSHV-infected cells. Most surprisingly, the association of LANA to both host and viral DNA is strongly disrupted during the lytic cycle of KSHV. This disruption can be prevented by the inhibition of viral DNA synthesis, suggesting the existence of novel and potent regulatory mechanisms linked to either viral DNA replication or late gene expression. IMPORTANCE: Here, we employ complementary genome-wide analyses to evaluate the distribution of the highly abundant latency-associated nuclear antigen, LANA, on the host genome and its impact on host gene expression during KSHV latent infection. Combined, ChIP-seq and RNA-seq reveal that LANA accumulates at active gene promoters that harbor specific short DNA sequences that are highly reminiscent of its cognate binding sites in the virus genome. Unexpectedly, we found that such association does not lead to remodeling of global host transcription during latency. We also report for the first time that LANA's ability to bind host and viral chromatin is highly dynamic and is disrupted in cells undergoing an extensive lytic reactivation. This therefore suggests that the association of LANA to chromatin during a productive infection cycle is controlled by a new regulatory mechanism.


Assuntos
Antígenos Virais/química , Antígenos Virais/metabolismo , Cromatina/metabolismo , Herpesvirus Humano 8/fisiologia , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Sarcoma de Kaposi/metabolismo , Proteínas Virais/metabolismo , Antígenos Virais/genética , Sítios de Ligação , Cromatina/química , Imunoprecipitação da Cromatina , Regulação Viral da Expressão Gênica , Estudo de Associação Genômica Ampla , Herpesvirus Humano 8/química , Herpesvirus Humano 8/genética , Humanos , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Ligação Proteica , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/virologia , Proteínas Virais/genética , Latência Viral
2.
PLoS Pathog ; 10(1): e1003847, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24453964

RESUMO

Productive herpesvirus infection requires a profound, time-controlled remodeling of the viral transcriptome and proteome. To gain insights into the genomic architecture and gene expression control in Kaposi's sarcoma-associated herpesvirus (KSHV), we performed a systematic genome-wide survey of viral transcriptional and translational activity throughout the lytic cycle. Using mRNA-sequencing and ribosome profiling, we found that transcripts encoding lytic genes are promptly bound by ribosomes upon lytic reactivation, suggesting their regulation is mainly transcriptional. Our approach also uncovered new genomic features such as ribosome occupancy of viral non-coding RNAs, numerous upstream and small open reading frames (ORFs), and unusual strategies to expand the virus coding repertoire that include alternative splicing, dynamic viral mRNA editing, and the use of alternative translation initiation codons. Furthermore, we provide a refined and expanded annotation of transcription start sites, polyadenylation sites, splice junctions, and initiation/termination codons of known and new viral features in the KSHV genomic space which we have termed KSHV 2.0. Our results represent a comprehensive genome-scale image of gene regulation during lytic KSHV infection that substantially expands our understanding of the genomic architecture and coding capacity of the virus.


Assuntos
Regulação Viral da Expressão Gênica/genética , Genoma Viral , Herpesvirus Humano 8/genética , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , RNA não Traduzido/genética , RNA Viral/genética , Linhagem Celular , Humanos
3.
J Cell Biol ; 185(3): 475-91, 2009 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-19414609

RESUMO

The nuclear pore complex (NPC) mediates all nucleocytoplasmic transport, yet its structure and biogenesis remain poorly understood. In this study, we have functionally characterized interaction partners of the yeast transmembrane nucleoporin Ndc1. Ndc1 forms a distinct complex with the transmembrane proteins Pom152 and Pom34 and two alternative complexes with the soluble nucleoporins Nup53 and Nup59, which in turn bind to Nup170 and Nup157. The transmembrane and soluble Ndc1-binding partners have redundant functions at the NPC, and disruption of both groups of interactions causes defects in Ndc1 targeting and in NPC structure accompanied by significant pore dilation. Using photoconvertible fluorescent protein fusions, we further show that the depletion of Pom34 in cells that lack NUP53 and NUP59 blocks new NPC assembly and leads to the reversible accumulation of newly made nucleoporins in cytoplasmic foci. Therefore, Ndc1 together with its interaction partners are collectively essential for the biosynthesis and structural integrity of yeast NPCs.


Assuntos
Citoplasma/fisiologia , Poro Nuclear/fisiologia , Proteínas Nucleares/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Sobrevivência Celular , Cinética , Proteínas Luminescentes/genética , Glicoproteínas de Membrana/metabolismo , Metionina/metabolismo , Poro Nuclear/ultraestrutura , Complexo de Proteínas Formadoras de Poros Nucleares/deficiência , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
J Cell Biol ; 173(3): 361-71, 2006 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-16682526

RESUMO

The nuclear pore complex (NPC) is a large channel that spans the two lipid bilayers of the nuclear envelope and mediates transport events between the cytoplasm and the nucleus. Only a few NPC components are transmembrane proteins, and the role of these proteins in NPC function and assembly remains poorly understood. We investigate the function of the three integral membrane nucleoporins, which are Ndc1p, Pom152p, and Pom34p, in NPC assembly and transport in Saccharomyces cerevisiae. We find that Ndc1p is important for the correct localization of nuclear transport cargoes and of components of the NPC. However, the role of Ndc1p in NPC assembly is partially redundant with Pom152p, as cells lacking both of these proteins show enhanced NPC disruption. Electron microscopy studies reveal that the absence of Ndc1p and Pom152p results in aberrant pores that have enlarged diameters and lack proteinaceous material, leading to an increased diffusion between the cytoplasm and the nucleus.


Assuntos
Glicoproteínas de Membrana/fisiologia , Poro Nuclear/fisiologia , Proteínas Nucleares/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Transporte Ativo do Núcleo Celular , Divisão Celular/genética , Divisão Celular/fisiologia , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Difusão , Glicoproteínas de Membrana/genética , Microscopia Eletrônica de Transmissão , Mutação , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Poro Nuclear/metabolismo , Poro Nuclear/ultraestrutura , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transporte de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/genética , Fuso Acromático/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...