Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Environ Toxicol ; 36(1): 67-76, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32856799

RESUMO

The increase in the exposure to carbon nanotubes (CNTs) and their incorporation into industrial, electronic, and biomedical products have required several scientific investigations into the toxicity associated with CNTs. Studies have shown that the metabolism and clearance of multiwalled CNTs (MWCNTs) from the body involve biotransformation in the liver and its excretion via the kidney. Since oxidative stress and inflammation underlines the toxicity of MWCNT, we investigated the ameliorative effect of kolaviron (KV), a natural antioxidant and anti-inflammatory agent, on hepatorenal damage in rats. Exposure to MWCNTs for 15 days significantly increased serum activities of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase thereby suggesting hepatic dysfunction. Kidney function, which was monitored by urea and creatinine levels, was also impaired by MWCNTs. Additionally, MWCNTs markedly increased myeloperoxidase activity, nitric oxide level, reactive oxygen and nitrogen species, and tumor necrosis factor level in both tissues. However, KV in a dose-dependent manner markedly attenuated MWCNT-induced markers of hepatorenal function in the serum and MWCNT-associated inflammation in the liver and kidney. Also, MWCNTs elicited significant inhibition of superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase activities. There was a significant diminution in glutathione level (GSH) and enhanced production of malondialdehyde (MDA) in MWCNTs-exposed rats. KV treatment was able to significantly increase the antioxidant enzymes and enhance the GSH level with a subsequent reduction in the MDA level. Taken together, KV elicited ameliorative effects against hepatorenal damage via its anti-inflammatory and antioxidant properties. Thus, KV could be an important intervention strategy for the hepatorenal damage associated with MWCNTs exposure.

2.
Psychopharmacology (Berl) ; 237(4): 1041, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31984444

RESUMO

After publication of this paper, the authors discovered that the name of the first author, Isaac Adegboyega Adedara, was missing in the proof. Dr. Adedara's intellectual contributions to the present article include conception and design of the study, manuscript writing and approval of the final version of the manuscript.

3.
Psychopharmacology (Berl) ; 237(4): 1027-1040, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31897575

RESUMO

Exposure to multi-walled carbon nanotubes (MWCNTs) reportedly elicits neurotoxic effects. Kolaviron is a phytochemical with several pharmacological effects namely anti-oxidant, anti-inflammatory, and anti-genotoxic activities. The present study evaluated the neuroprotective mechanism of kolaviron in rats intraperitoneally injected with MWCNTs alone at 1 mg/kg body weight or orally co-administered with kolaviron at 50 and 100 mg/kg body weight for 15 consecutive days. Following exposure, neurobehavioral analysis using video-tracking software during trial in a novel environment indicated that co-administration of both doses of kolaviron significantly (p < 0.05) enhanced the locomotor, motor, and exploratory activities namely total distance traveled, maximum speed, total time mobile, mobile episode, path efficiency, body rotation, absolute turn angle, and negative geotaxis when compared with rats exposed to MWCNTs alone. Further, kolaviron markedly abated the decrease in the acetylcholinesterase activity and antioxidant defense system as well as the increase in oxidative stress and inflammatory biomarkers induced by MWCNT exposure in the cerebrum, cerebellum, and mid-brain of rats. The amelioration of MWCNT-induced neuronal degeneration in the brain structures by kolaviron was verified by histological and morphometrical analyses. Taken together, kolaviron abated MWCNT-induced neurotoxicity via anti-inflammatory and redox regulatory mechanisms.


Assuntos
Anti-Inflamatórios/uso terapêutico , Encéfalo/efeitos dos fármacos , Flavonoides/uso terapêutico , Locomoção/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Extratos Vegetais/uso terapêutico , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Encéfalo/metabolismo , Encéfalo/patologia , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Garcinia kola , Locomoção/fisiologia , Masculino , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...