Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 148(13): 2932-2940, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37199245

RESUMO

Simple electrochemical detection of the antibiotic amoxicillin (AMX) in water is crucial to mitigate health and environmental risks; however, the process requires single-use electrodes, which can increase the waste generated as well as the cost. Cellulose nanofibers (CNFs) are biodegradable materials that can be used as electrode frameworks. In this study, a sensitive single-use CNF-based printed electrode modified with polybenzimidazole (PBI)-wrapped multi-walled carbon nanotubes (MWCNTs) is developed for AMX detection. The CNF-based printed electrode achieved a detection limit of 0.3 µM and exhibited a wider detection range of 0.3-500 µM compared with electrodes developed in previous studies. In addition, the electrode reactions of AMX were electrochemically investigated and found to primarily involve the adsorbed species at low AMX concentrations and be diffusion-controlled at high AMX concentrations. Finally, the printed electrodes were used for the easy and practical determination of AMX in seawater and tap water by a soaking method. Satisfactory results were obtained, and the final concentrations of AMX were determined using simple calibration equations. Therefore, this CNF-based electrode exhibits great potential for practical real-time AMX detection in the field.


Assuntos
Nanofibras , Nanotubos de Carbono , Amoxicilina , Eletrodos , Água , Técnicas Eletroquímicas
2.
Arab J Chem ; 15(8): 104020, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35664893

RESUMO

Considering the limitations of the assays currently available for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its emerging variants, a simple and rapid method using fluorescence spectrophotometry was developed to detect coronavirus disease 2019 (COVID-19). Forty clinical swab samples were collected from the nasopharyngeal and oropharyngeal cavities of COVID-19-positive and -negative. Each sample was divided into two parts. The first part of the samples was analyzed using reverse transcription-polymerase chain reaction (RT-qPCR) as the control method to identify COVID-19-positive and -negative samples. The second part of the samples was analyzed using fluorescence spectrophotometry. Fluorescence measurements were performed at excitation and emission wavelengths ranging from 200 to 800 nm. Twenty COVID-19-positive samples and twenty COVID-19-negative samples were detected based on RT-qPCR results. The fluorescence spectrum data indicated that the COVID-19-positive and -negative samples had significantly different characteristics. All positive samples could be distinguished from negative samples by fluorescence spectrophotometry. Principal component analysis showed that COVID-19-positive samples were clustered separately from COVID-19-negative samples. The specificity and accuracy of this experiment reached 100%. Limit of detection (LOD) obtained 42.20 copies/ml (Ct value of 33.65 cycles) for E gene and 63.60 copies/ml (Ct value of 31.36 cycles) for ORF1ab gene. This identification process only required 4 min. Thus, this technique offers an efficient and accurate method to identify an individual with active SARS-CoV-2 infection and can be easily adapted for the early investigation of COVID-19, in general.

3.
Heliyon ; 8(5): e09401, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600448

RESUMO

Rapid analysis to distinguish porcine and bovine gelatin using a modified Quartz Crystal Microbalance (QCM) sensor has been studied. The PANI was deposited on the sensor surface using electropolymerization, and then nickel nanoparticles were deposited by layer by layer (LbL) technique. The modified QCM sensor's performance was compared to an unmodified sensor in porcine and bovine gelatin at neutral, acidic, and alkaline conditions. The result shows that the unmodified sensor cannot distinguish between porcine and bovine gelatin, whereas the modified QCM sensor produces a different response. Porcine gelatin shows an increasing frequency response, but in contrast, bovine gelatin decreases frequency response at the alkaline condition. The time response was 2 min with a detection limit of 51.2 ppm and 8.7 ppm for porcine and bovine gelatin, respectively. Further investigation shows that the modified sensor can analyze porcine gelatin contamination in the a mixed gelatin sample.

4.
Materials (Basel) ; 12(13)2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31266233

RESUMO

The extract of honeycomb waste was studied as a corrosion inhibitor on 304 stainless steel in H2SO4 solutions. The honeycomb waste was obtained from beekeeping at Lawang-Malang, East Java, Indonesia. Electrochemical and scanning electron microscopy methods were used to investigate the performance of the corrosion inhibition process. The inhibition efficiency of the inhibitor (2000 mg/L) reached 97.29% in 0.5 M H2SO4 and decreased with the acid concentration. Kinetic parameters were calculated to explain the effect of acid concentration on the inhibition process. The study on the adsorption behavior of the extracts followed the Frumkin isotherm model. The adsorption of the inhibitor on the 304 stainless steel surface was confirmed by the negative and lower values of Gibbs free energy. The obtained scanning electron microscopy (SEM) images were confirmed by comparing the surface of the specimens with and without inhibitor after corroding for one week. The results indicated that the extract acted as a good inhibitor for 304 stainless steel in acid corrosion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...