Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(14): 7701-7709, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38534056

RESUMO

The two major components of greenhouse gases, CO2 and water, are indispensable for sustaining life on Earth. Water vapor is the most significant greenhouse gas that has provided the earth with an "atmospheric blanket" and prevented the surface of the earth from freezing. However, contemporary climate models largely consider the influence of water vapor as a factor within positive feedback loops, while the possibility of direct anthropogenic emissions of water vapor as primary drivers of global warming remains underexplored. In particular, a common assumption has been that the global atmospheric water vapor will increase by about 6 to 7% in response to each 1 °C of warming caused by the nonaqueous greenhouse gases in accordance with the Clausius-Clapeyron equation, and this increased moisture content will lead to an increased greenhouse gas effect. However, the Clausius-Clapeyron equation is based on two-phase equilibrium, and there is no a priori physical basis that it can be applied to the earth's climate for which the water vapor does not always coexist with a condensed phase. Here, we utilized global specific humidity data from the NCEP/NCAR reanalysis data set to examine whether the Clausius-Clapeyron equation can form a basis for such positive feedback commonly assumed in the contemporary climate models. Our results show (1) qualitiatively, the linear nature of the Clausius-Clapeyron equation demonstrates a significant level of consistency when averaged over expansive regions like specific latitudes around the globe, (2) this consistency does not extend to individual locations where a plot of (ln Pv) vs (1/T) becomes nonlinear, indicating substantial undersaturation that varies with time, (3) quantitatively, the discrepancies between the observed and the expected values of the slopes are wide-ranging, and (4) the absolute amount of water vapor increased substantially above the population centers and the agricultural areas in the Northern Hemisphere between 1960 and 2020. Human activities appear to have substantial impacts on the local water vapor content in the atmosphere. Once we assume that anthropogenic emissions of water vapor are the source of local water vapor content in the atmosphere, it can, together with the air circulation patterns (Hadler, Ferrel and polar), provide an explanation for the observations that Arctic ice has been melting at a much more accelerated rate than Antarctic ice.

2.
Molecules ; 28(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175139

RESUMO

Applications of clathrate hydrate require fast formation kinetics of it, which is the long-standing technological bottleneck due to mass transfer and heat transfer limitations. Although several methods, such as surfactants and mechanical stirring, have been employed to accelerate gas hydrate formation, the problems they bring are not negligible. Recently, a new water-in-air dispersion stabilized by hydrophobic nanosilica, dry water, has been used as an effective promoter for hydrate formation. In this review, we summarize the preparation procedure of dry water and factors affecting the physical properties of dry water dispersion. The effect of dry water dispersion on gas hydrate formation is discussed from the thermodynamic and kinetic points of view. Dry water dispersion shifts the gas hydrate phase boundary to milder conditions. Dry water increases the gas hydrate formation rate and improves gas storage capacity by enhancing water-guest gas contact. The performance comparison and synergy of dry water with other common hydrate promoters are also summarized. The self-preservation effect of dry water hydrate was investigated. Despite the prominent effect of dry water in promoting gas hydrate formation, its reusability problem still remains to be solved. We present and compare several methods to improve its reusability. Finally, we propose knowledge gaps in dry water hydrate research and future research directions.

3.
Molecules ; 26(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451150

RESUMO

The nucleation of ice is vital in cloud physics and impacts on a broad range of matters from the cryopreservation of food, tissues, organs, and stem cells to the prevention of icing on aircraft wings, bridge cables, wind turbines, and other structures. Ice nucleation thus has broad implications in medicine, food engineering, mineralogy, biology, and other fields. Nowadays, the growing threat of global warming has led to intense research activities on the feasibility of artificially modifying clouds to shift the Earth's radiation balance. For these reasons, nucleation of ice has been extensively studied over many decades and rightfully so. It is thus not quite possible to cover the whole subject of ice nucleation in a single review. Rather, this feature article provides a brief overview of ice nucleation that focuses on several major outstanding fundamental issues. The author's wish is to aid early researchers in ice nucleation and those who wish to get into the field of ice nucleation from other disciplines by concisely summarizing the outstanding issues in this important field. Two unresolved challenges stood out from the review, namely the lack of a molecular-level picture of ice nucleation at an interface and the limitations of classical nucleation theory.


Assuntos
Criopreservação , Congelamento , Gelo
4.
J Phys Chem A ; 123(37): 7911-7919, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31503494

RESUMO

Formation of gas hydrate is a first-order phase transition that starts with nucleation. Understanding of nucleation is of interest to many in chemical and petroleum industries, as nucleation, while beneficial in many chemical processes, is detrimental in flow assurance of oil and natural gas pipelines. A primary difficulty in the investigation of gas hydrate nucleation has been the inability of researchers to compare nucleation rates of gas hydrates across various systems of different scales and complexities, which in turn has been limiting the ability of researchers to study the nucleation process itself. In this study, a first-generation high-pressure automated lag time apparatus (HP-ALTA MkI) was used to determine the nucleation curve of structure I (sI) - forming carbon dioxide hydrate. The instrument subjected a quiescent water sample of well-defined dimensions to a large number of linear cooling ramps under isobaric conditions, and detected and recorded carbon dioxide hydrate formation temperature distributions. A survival curve was constructed from the measured ensemble, and a nucleation curve was derived from the survival curve using the empirical model-independent method we had previously reported. The nucleation rate of carbon dioxide hydrate was found to be significantly greater than that of pure methane hydrate or that of natural gas hydrate over the entire range of subcooling investigated. We provide a new physical interpretation of an experimentally determined nucleation curve and, by doing so, solve one of the outstanding puzzles of the HP-ALTA technology.

5.
J Phys Chem A ; 119(44): 10784-90, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26506447

RESUMO

A high pressure automated lag time apparatus (HP-ALTA) was used for the investigation of the controversial memory effect in methane-propane mixed gas hydrates. The instrument can apply a large number of linear cooling ramps to a small volume of sample water under an isobaric condition of up to 15 MPa and record the maximum achievable subcooling for each cooling ramp. Over a hundred nucleation events were recorded for each of the several superheating temperatures used for the dissociation of the gas hydrate in a sample. In total, four different sample cells were used, and the effect of heating time was also studied for two of the four sample cells. A difference between two stochastic nucleation probability distributions was systematically and unambiguously quantified in terms of the most probable difference in the maximum achievable subcoolings. The protocol offers by far the most statistically robust method of quantification of the magnitude of the memory effect in each sample. From the analysis of several thousands of nucleation events, the following conclusions were made: (1) Even though the nucleation phenomena were intrinsically stochastic, a clear bias was observed which supported the existence of the memory effect. In particular, a reduction in the most probable subcooling of at least 4 K was required for positive identification of the memory effect for one of the sample cells. (2) The reduction increased as the superheating temperature was lowered. (3) The magnitude of the memory effect varied substantially among the sample cells used. (4) No significant effect of the heating time was observed in the range studied.

6.
Rev Sci Instrum ; 85(11): 115101, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430143

RESUMO

We recently reported the development of a high pressure electrical conductivity probe (HP-ECP) for experimental studies of formation of gas hydrates from electrolytes. The onset of the formation of methane-propane mixed gas hydrate from salt solutions was marked by a temporary upward spike in the electrical conductivity. To further understand hydrate formation a second generation of window-less HP-ECP (MkII), which has a much smaller heat capacity than the earlier version and allows access to faster cooling rates, has been constructed. Using the HP-ECP (MkII) the electrical conductivity signal responses of NaCl solutions upon the formation of ice, tetrahydrofuran hydrates, and methane-propane mixed gas hydrate has been measured. The concentration range of the NaCl solutions was from 1 mM to 3M and the driving AC frequency range was from 25 Hz to 5 kHz. This data has been used to construct an "electrical conductivity response phase diagrams" that summarize the electrical conductivity response signal upon solid formation in these systems. The general trend is that gas hydrate formation is marked by an upward spike in the conductivity at high concentrations and by a drop at low concentrations. This work shows that HP-ECP can be applied in automated measurements of hydrate formation probability distributions of optically opaque samples using the conductivity response signals as a trigger.

7.
Rev Sci Instrum ; 85(6): 065115, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24985860

RESUMO

A High Pressure Automated Lag Time Apparatus (HP-ALTA) can measure gas hydrate formation probability distributions from water in a glass sample cell. In an HP-ALTA gas hydrate formation originates near the edges of the sample cell and gas hydrate films subsequently grow across the water-guest gas interface. It would ideally be desirable to be able to measure gas hydrate formation probability distributions of a single water droplet or mist that is freely levitating in a guest gas, but this is technically challenging. The next best option is to let a water droplet sit on top of a denser, immiscible, inert, and wall-wetting hydrophobic liquid to avoid contact of a water droplet with the solid walls. Here we report the development of a second generation HP-ALTA which can measure gas hydrate formation probability distributions of a water droplet which sits on a perfluorocarbon oil in a container that is coated with 1H,1H,2H,2H-Perfluorodecyltriethoxysilane. It was found that the gas hydrate formation probability distributions of such a quasi-free water droplet were significantly lower than those of water in a glass sample cell.

8.
Rev Sci Instrum ; 84(1): 015110, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23387698

RESUMO

We previously reported the development of a high pressure automated lag time apparatus and a high pressure video cell for experimental study of nucleation and growth of gas hydrates. Here we report the development of a high pressure electrical conductivity probe that monitors the electrical conductivity of an electrolyte that is subjected to a linear cooling ramp at elevated hydrate-forming-gas pressures. The electrical conductivity steadily decreases as the linear cooling progresses because of the increasing viscosity of the electrolyte and the consequently decreasing mobility of the ions. The onset of the formation of methane-propane mixed gas hydrate films at the gas-electrolyte interface is marked by an upward spike in the electrical conductivity. The physical mechanisms behind this phenomenon remain to be elucidated. Continued cooling of the electrolyte to, and subsequent holding of, the temperature at 273 K eventually results in decreased electrical conductivity. This conductivity signal can be used for the detection of the onset of the formation of gas hydrates in optically opaque samples that contain electrolytes.

9.
Langmuir ; 29(4): 1017-23, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23234353

RESUMO

Interfacial nanobubbles (INBs) on a solid surface in contact with water have drawn widespread research interest. Although several theoretical models have been proposed to explain their apparent long lifetimes, the underlying mechanism still remains in dispute. In this work, the morphological evolution of INBs was examined in air-equilibrated and partially degassed water with the use of atomic force microscopy (AFM). Our results show that (1) INBs shrank in the partially degassed water while they grew slightly in the air-equilibrated water, (2) the three-phase boundary of the INBs was pinned during the morphological evolution of the INBs. Our analyses show that (1) the lifetime of INBs was sensitive to the saturation level of dissolved gases in the surrounding water, especially when the concentration of dissolved gases was close to saturation, and (2) the pinning of the three-phase boundary could significantly slow down the kinetics of both the growth and the shrinkage of the INBs. We developed a one-dimensional version of the Epstein-Plesset model of gas diffusion to account for the effect of pinning.

10.
Langmuir ; 28(28): 10471-7, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22765767

RESUMO

Contamination has previously been invoked to explain the flat shape and the long lifetimes of interfacial nanobubbles (INBs). In this study, the effects of surfactants on the formation and the stability of INBs were investigated when surfactants were added to the system before, during, and after the standard solvent exchange procedure (SSEP) for the formation of INBs. The solutions of sodium dodecyl sulfate (SDS) above critical micelle concentration were found to have little effect on the bubble stability. Likewise, cleaning of the substrate with a surfactant solution had little effect. In contrast, addition of a water-insoluble surfactant during the formation dramatically reduced the INBs. Finally, repeated application of SSEP to surfactant-coated substrates progressively rinsed the surfactant off the system. Thus, we found no evidence to support the hypothesis that (1) INBs are stabilized by a layer of insoluble organic contaminant or that (2) SSEP introduces surface-active materials to the system that could stabilize INBs.


Assuntos
Nanopartículas/química , Dodecilsulfato de Sódio/química , Tensoativos/química , Luz , Micelas , Tamanho da Partícula
11.
Rev Sci Instrum ; 82(6): 065109, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21721732

RESUMO

Nucleation in a supercooled or a supersaturated medium is a stochastic event, and hence statistical analyses are required for the understanding and prediction of such events. The development of reliable statistical methods for quantifying nucleation probability is highly desirable for applications where control of nucleation is required. The nucleation of gas hydrates in supercooled conditions is one such application. We describe the design and development of a high pressure automated lag time apparatus (HP-ALTA) for the statistical study of gas hydrate nucleation and growth at elevated gas pressures. The apparatus allows a small volume (≈150 µl) of water to be cooled at a controlled rate in a pressurized gas atmosphere, and the temperature of gas hydrate nucleation, T(f), to be detected. The instrument then raises the sample temperature under controlled conditions to facilitate dissociation of the gas hydrate before repeating the cooling-nucleation cycle again. This process of forming and dissociating gas hydrates can be automatically repeated for a statistically significant (>100) number of nucleation events. The HP-ALTA can be operated in two modes, one for the detection of hydrate in the bulk of the sample, under a stirring action, and the other for the detection of the formation of hydrate films across the water-gas interface of a quiescent sample. The technique can be applied to the study of several parameters, such as gas pressure, cooling rate and gas composition, on the gas hydrate nucleation probability distribution for supercooled water samples.

12.
J Phys Chem B ; 112(44): 13671-5, 2008 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-18842008

RESUMO

We studied the thermodynamic stability of interfacial gaseous states on atomically smooth highly ordered pyrolytic graphite (HOPG) in water using atomic force microscopy. Quasi-two-dimensional gas layers (micropancakes) required a higher supersaturation of gas than spherical-cap-shaped nanobubbles. The two forms of gas coexisted at a sufficiently high supersaturation of gas where one or more of the nanobubbles may sit on top of a micropancake. The micropancakes spontaneously coalesced with each other over time. After the coalescence of two neighboring micropancakes which each had had a nanobubble on top, one nanobubble grew at the expense of the other. We analyzed these results assuming temporal and local quasi-equilibrium conditions.


Assuntos
Gases/química , Termodinâmica , Grafite/química , Microscopia de Força Atômica , Pirróis/química
13.
J Phys Chem B ; 110(51): 25982-93, 2006 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-17181248

RESUMO

Dynamics of capillary held liquids plays important roles in a wide range of systems including adhesion, printing of paints and inks, the behavior of wet granular materials, and the mass transfer through porous media. Recent study suggested the presence of two distinct modes for the disappearance of capillary-held liquids in a slit-like pore of adjustable slit width that depended on the slit-opening rates. In contrast to the first mode that is well-documented in terms of the Young-Laplace equation, a novel and unexpected mode was observed when the liquid bridge was held in the vicinity of the thermodynamic phase boundary (equilibrium Kelvin length). Here we extended the study to three new compounds that have a wide range of vapor pressures. An evaporating liquid bridge developed large refractive index gradients that extended over a few micrometers from the edge of the meniscus once the slit width was increased beyond the equilibrium Kelvin length. This interfacial region with depleted refractive index retreated inward as the meniscus shrank with time, and the refractive index of the entire bridge subsequently fell from that of the liquid once the interfacial regions from the opposite sides of the shrinking bridge met at the center. The refractive index recovered to that of the liquid when the slit width was closed to below the Kelvin length and the vapor was allowed to recondense. The time scale of the evaporation and condensation depended on the size of the surface gap, and, when the surfaces were placed at a separation very close to the Kelvin length, it was possible to detect a stage in which the system was in an apparent kinetic equilibrium between two physical states--with and without the liquid connecting the two surfaces.

14.
Langmuir ; 22(22): 9238-43, 2006 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-17042536

RESUMO

Nanobubbles at an interface between a hydrophobic solid and water have a wide range of implications, but the evidence for their existence is still being debated. Here we artificially induced nanobubbles on freshly cleaved HOPG substrates in water using the protocol developed previously and subjected the system to moderate levels of degassing (approximately 0.1 atm for 0.5 to 3 h). The AFM images after the partial degassing revealed that some nanobubbles had coalesced and detached from the substrate because of buoyancy, whereas others apparently remained unaffected. The size and spatial distributions of the nanobubbles after the partial degassing suggest that there is a critical size for a nanobubble above which it may grow. The contact angle of water next to nanobubbles (approximately 160 degrees) is much larger than the advancing contact angle of a macroscopic water droplet on the same substrate (approximately 80 degrees) both before and after the partial degassing and concomitant growth and shrinkage of the nanobubbles. The contact angle of a nanobubble also remained unchanged as the nanobubble was moved along the substrate by the AFM tip. The apparent lack of contact angle hysteresis in the nanobubble systems may suggest that the very large contact angle may correspond to a local minimum of the free-energy landscape.


Assuntos
Gases/química , Grafite/química , Nanopartículas/química , Água/química , Microscopia de Força Atômica , Nanopartículas/ultraestrutura
15.
Langmuir ; 22(11): 5025-35, 2006 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-16700590

RESUMO

In recent years there has been an accumulation of evidence for the existence of nanobubbles on hydrophobic surfaces in water, despite predictions that such small bubbles should rapidly dissolve because of the high internal pressure associated with the interfacial curvature and the resulting increase in gas solubility. Nanobubbles are of interest among surface scientists because of their potential importance in the long-range hydrophobic attraction, microfluidics, and adsorption at hydrophobic surfaces. Here we employ recently developed techniques designed to induce nanobubbles, coupled with high-resolution tapping-mode atomic force microscopy (TM-AFM) to measure some of the physical properties of nanobubbles in a reliable and repeatable manner. We have reproduced the earlier findings reported by Hu and co-workers. We have also studied the effect of a wide range of solutes on the stability and morphology of these deliberately formed nanobubbles, including monovalent and multivalent salts, cationic, anionic, and nonionic surfactants, as well as solution pH. The measured physical properties of these nanobubbles are in broad agreement with those of macroscopic bubbles, with one notable exception: the contact angle. The nanobubble contact angle (measured through the denser aqueous phase) was found to be much larger than the macroscopic contact angle on the same substrate. The larger contact angle results in a larger radius of curvature and a commensurate decrease in the Laplace pressure. These findings provide further evidence that nanobubbles can be formed in water under some conditions. Once formed, these nanobubbles remain on hydrophobic surfaces for hours, and this apparent stability still remains a well-recognized mystery. The implications for sample preparation in surface science and in surface chemistry are discussed.

16.
Nihon Koshu Eisei Zasshi ; 53(2): 92-104, 2006 Feb.
Artigo em Japonês | MEDLINE | ID: mdl-16566240

RESUMO

PURPOSE: Periodic health examination are presumed to be important with respect to the well-being of aged individuals. The purpose of this study was to analyze the relationships between elderly at home accepting periodic health examination and their social support and social networks. METHOD: The survey was performed targeting so-called young elderly persons living at home in 3 regions in Hokkaido Prefecture, a large city (Sapporo), an ex-coalmining town (Yuubari) and a small farming town (Takasu). The study populations were asked about social support and social networks, and the Mantel-Haenszel method was applied to analyze the data. RESULTS: 1) Both males and females who received periodic health examination within the last one year (participants) were members of various groups, such as neighborhood societies, clubs for the elderly and so on, and were more interested in public magazines and political issues than those who had never received periodic health examination (non-participants). Elderly males who accepted periodic health examination were those who were interested in elections, who had a hobby, and who thought that life was worthwhile. 2) Both elderly males and females who accepted periodic health examination were those who had friends, and elderly males who accepted periodic health examination were those who had close relatives and who lived in a friendly neighborhood. 3) Elderly males who accepted periodic health examination were more likely to both receive and supply instrumental and emotional support in interaction with others.


Assuntos
Serviços de Saúde Comunitária , Inquéritos Epidemiológicos , Aceitação pelo Paciente de Cuidados de Saúde , Exame Físico , Apoio Social , Idoso , Feminino , Serviços de Saúde para Idosos , Humanos , Masculino
17.
Langmuir ; 22(5): 2397-8; discussion 2399-401, 2006 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-16489835
18.
J Phys Chem B ; 109(25): 12509-14, 2005 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16852547

RESUMO

It is known that the thin-film structure of confined fluids and solids can be changed when the confining surfaces are sheared. Positional and orientational short- or long-range reordering can occur that often have no bulk counterparts. These multilayer, monolayer, or even sub-monolayer effects are important for understanding adhesion and friction processes, but they have proved difficult to measure, partly due to a lack of experimental techniques and partly to their apparent subtle dependence on many experimental parameters. Here we report the use of shear measurements and "optical absorption spectroscopy" in the surface forces apparatus to measure a shear-induced phase transition of an anisotropic (dye) molecule confined between two shearing mica surfaces in aqueous solution. Our studies on the shear-induced ordering and friction forces of highly anisotropic cyanine dye molecules in thin water films show only a weak effect of molecular anisotropy on shear-induced ordering, friction forces, and the onset of shear-induced crystallization, although dramatic changes do occur when the confined molecules ultimately crystallize.

19.
Langmuir ; 20(9): 3616-22, 2004 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-15875391

RESUMO

Due to its perfect cleavage that provides large areas of molecularly smooth, chemically inert surfaces, mica is the most commonly used natural substrate in measurements with the surface forces apparatus (SFA), in atomic force microscopy (AFM), and in many adsorption studies. However, preparing mica surfaces that are truly clean is not easy since mica is a high-energy surface that readily adsorbs water, organic contaminants, and gases from the atmosphere. Mica can also become charged on cleaving, which makes it prone to picking up oppositely charged particles or mica flakes from the surroundings. High refractive index particles, such as metals, will adhere to mica through van der Waals forces. Recent articles have demonstrated that particle contamination is obtained when inappropriate cutting and handling procedures for the mica are used. In this paper, we show that both particle and other critical contamination is easy to detect and provide proper steps to take during the sample preparation process.

20.
Langmuir ; 20(8): 3129-37, 2004 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-15875839

RESUMO

Recently reported results indicate that the formation of surfactant-free, oil-in-water emulsions can be significantly enhanced by the almost complete removal of dissolved gases and that the reintroduction of dissolved gases does not immediately destabilize the already-formed emulsions. These initial experiments have been repeated and extended to include a wider range of organic liquids and the application of light scattering to determine droplet size and distribution. The earlier observations have been confirmed. In addition, a systematic trend was found between the solubility of the oil in water and the stability (lifetime) of the degassed oil droplets in water. The lower the solubility, the more stable the emulsion, and for oils that are sparingly soluble in water such as squalane, the small droplets remain stable for several weeks, with buoyancy separation being the main cause of instability of the large droplets with time. The addition of electrolytes, up to molar concentrations, substantially reduces the enhancement of the dispersions on degassing but appears to have little effect on the stability of the already-formed emulsions. The reduction of pH to about 2 significantly reduces both the enhancement of the dispersions on degassing and the stability of the already-formed emulsions. In contrast, the increase of pH to about 11 hardly affects the enhancement of the dispersions on degassing or the stability of the already-formed emulsions. We have confirmed the importance of dissolved gas and its association with the electrostatic effects, but we still cannot provide a complete explanation for the effect of degassing on the hydrophobic dispersions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...