Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 13(7): 4213-4220, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33586723

RESUMO

We report a new approach to visualize the local distribution of molecular recognition sites with nanoscale resolution by amplitude-modulation atomic force microscopy. By integrating chemical modification of probes, photothermal excitation to drive a cantilever, and lift-up scanning over surface topography, we successfully visualized binding sites provided by streptavidin on a solid surface for biotin attached on an AFM probe. The optimization of measurement conditions was discussed in detail, and the application of the technique was verified with a different ligand-receptor system.

2.
Phys Chem Chem Phys ; 21(30): 16686-16693, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31317978

RESUMO

Understanding the properties of cell membranes is important in the fields of fundamental and applied biology. While the characterization of simplified biological membrane mimics comprising liquid phase lipids has been routinely performed due to the ease of fabrication, the characterization of more realistic membrane mimics comprising multi-phase lipids remains challenging due to more complicated fabrication requirements. Herein, we report a convenient approach to fabricate and characterize multi-phase supported lipid bilayers (SLBs). We employed the solvent-assisted lipid bilayer (SALB) formation method to fabricate mixed lipid bilayers comprising liquid phase 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and gel phase 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipids at room temperature. The fabrication procedure was performed inside a newly designed microfluidic chamber, which facilitated the subsequent characterization of the SLBs without exposure to air. The SLBs were then characterized via fluorescence microscopy, fluorescence recovery after photobleaching (FRAP), atomic force microscopy (AFM) and AFM-based force-distance measurements. Interestingly, results from these characterization techniques revealed that regardless of the gel phase composition, the SALB formation method consistently yielded uniform SLBs at room temperature, even though the transition temperature of DPPC is considerably higher. Furthermore, the composition ratio of DOPC and DPPC in the precursor solution is well reproduced in the fabricated SLBs. We also identified from diffusivity measurements that a high ratio of gel phase lipid revitalizes lipid-lipid interactions, which led to reduced molecular fluidity and the suppression of thermal undulation within the SLBs. Taken together, our results highlight the robustness of the SALB formation method that allows the fabrication of complex lipid bilayers with a high degree of precision, which is suitable for functional studies of biological membranes.


Assuntos
Bicamadas Lipídicas/química , Fenômenos Mecânicos , Difusão
3.
RSC Adv ; 10(1): 70-75, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35492547

RESUMO

An instrumentation technique for real-time, in situ and real space observation of microphase separation was proposed for ultra-high molecular weight block copolymer thin films (1010 kg mol-1, domain spacing of 180 nm) under high solvent vapor swelling conditions. This is made possible by a combination of a homebuilt chamber which is capable of supplying sufficient amount of vapor, and force-distance curve measurements which gives real-time swollen film thickness and allow active feedback for controlling the degree of swelling. We succeeded in monitoring the domain coarsening of perpendicular lamellar structures in polystyrene-block-poly(methyl methacrylate) thin films for eight hours via tapping mode imaging. During the annealing process, the thickness reached a maximum of 8.5 times that of the original film. The series of temporal real space topographic images obtained via this method allowed us to study, for the first time, the growth exponent of the correlation length under solvent vapor annealing.

4.
RSC Adv ; 9(39): 22705-22712, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35519498

RESUMO

Although the streptavidin-biotin intermolecular bond has been extensively used in many applications due to its high binding affinity, its exact nature and interaction mechanism have not been well understood. Several reports from previous studies gave a wide range of results in terms of the system's energy potential landscape because of bypassing some short-lived states in the detection process. We employed a quasi-static process of slowly loading force onto the bond (loading rate = 20 pN s-1) to minimize the force-induced disruption and to provide a chance to explore the system in near-equilibrium. Therein, by utilizing a fast sampling rate for the detection of force by atomic force microscopy (20 µs per data point), several transient states of the system were clearly resolved in our force spectroscopy measurements. These key strategies allow the determination of the states' relative positions and free energy levels along the pulling reaction coordinate for the illustration of an energy landscape of the system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...